7.6.2 Let $F(x, y)=(a / x)+(b / y)+x y$. Note that x and y must be nonzero for this to be defined. Let's compute some partial derivatives:

$$
\begin{gathered}
F_{1}(x, y)=-\frac{a}{x^{2}}+y, \quad F_{2}(x, y)=-\frac{b}{y^{2}}+x, \\
F_{11}(x, y)=\frac{2 a}{x^{3}}, \quad F_{12}(x, y)=1, \quad F_{22}(x, y)=\frac{2 b}{y^{3}} .
\end{gathered}
$$

The critical points occur where $F_{1}(x, y)=0=F_{2}(x, y)$. Thus $y=a / x^{2}$ and $x=b / y^{2}$. Solving for x (and using the fact that $x \neq 0$) gives

$$
x_{0}=\left(\frac{a^{2}}{b}\right)^{1 / 3}, \quad y_{0}=\left(\frac{b^{2}}{a}\right)^{1 / 3}
$$

We plug these into F_{11} and $F_{11} F_{22}-F_{12}^{2}$: at the point $\left(x_{0}, y_{0}\right)$ we have

$$
F_{11}\left(x_{0}, y_{0}\right)=\frac{2 b}{a}, \quad F_{11} F_{22}-F_{12}^{2}=\frac{2 b}{a} \frac{2 a}{b}-1=3
$$

Thus $F_{11} F_{22}-F_{12}^{2}$ is always positive. If a and b have the same sign, then F_{11} is positive, and we get a minimum. If a and b have different signs, then F_{11} is negative, and we get a maximum.
7.6.3 Let $F(x, y)=\left(a x^{2}+b y^{2}\right) e^{-x^{2}-y^{2}}$. Then

$$
F_{1}(x, y)=e^{-x^{2}-y^{2}}\left(2 a x-\left(a x^{2}+b y^{2}\right) 2 x\right), \quad F_{2}(x, y)=e^{-x^{2}-y^{2}}\left(2 b y-\left(a x^{2}+b y^{2}\right) 2 y\right)
$$

or

$$
F_{1}(x, y)=e^{-x^{2}-y^{2}} 2 x\left(a-a x^{2}-b y^{2}\right), \quad F_{2}(x, y)=e^{-x^{2}-y^{2}} 2 y\left(b-a x^{2}-b y^{2}\right) .
$$

The first of these is zero when $x=0$ or when $a=a x^{2}+b y^{2}$. The second is zero when $y=0$ or $b=a x^{2}+b y^{2}$. Note that since $a \neq b$, we can't have both $a=a x^{2}+b y^{2}$ and $b=a x^{2}+b y^{2}$. If $x=0$, the possibilities are $y=0, y=-1, y=1$. If $y=0$, the possibilities are $x=0, x=-1, x=1$. So there are five critical points: $(0,0),(0,-1)$, $(0,1),(-1,0)$, and $(1,0)$.

To determine their "natures," we use the second derivative test, so we need to compute the various second partials. So:

$$
\begin{aligned}
& F_{11}(x, y)=e^{-x^{2}-y^{2}}\left(-2 a x^{2}+4 a x^{4}+4 b x^{2} y^{2}+2 a-8 a x^{2}-2 b y^{2}\right) \\
& F_{12}(x, y)=e^{-x^{2}-y^{2}}\left(-4 a x y-4 b x y+4 a x^{3} y-4 b x y^{3}\right) \\
& F_{22}(x, y)=e^{-x^{2}-y^{2}}\left(-2 b y^{2}+4 b y^{4}+4 a x^{2} y^{2}+2 b-8 b y^{2}-2 a x^{2}\right)
\end{aligned}
$$

Now we plug the critical points into F_{11} and $F_{11} F_{22}-F_{12}^{2}$. Note that if either $x=0$ or $y=0$ (as is the case for all of the critical points), then $F_{12}=0$.

At $(0,0), F_{11}=2 a, F_{12}=0$, and $F_{22}=2 b$. Thus $F_{11} F_{22}-F_{12}^{2}=4 a b>0$. Thus this point is a minimum.

At $(0,-1), F_{11}=e^{-1}(2 a-2 b)<0, F_{12}=0$, and $F_{22}=e^{-1}(-4 b)$. Thus $F_{11} F_{22}-$ $F_{12}^{2}=e^{-2}(-4 b)(2 a-2 b)>0$, so this is a maximum.

The behavior at the point $(0,1)$ is just like that at $(0,-1)$: a maximum.
At $(-1,0)$ or $(1,0), F_{11}=e^{-1}(-4 a), F_{12}=0$, and $\left.F_{22}=e^{-1}\right)(2 b-2 a)$. Thus $F_{11}<0$ and $F_{11} F_{22}-F_{12}^{2}=e^{-2}(-4 a)(2 b-2 a)<0$. These points are saddles.

Here's a graph, in which you can see the two maxima, one of the two saddle points, and the suggestion of a minimum:

8.2.3 Let $F(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}-\cos z$. Then $F_{2}=y\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}$, and at the point $(0,1,0)$, this equals 1 , so it can be solved for y in terms of x and z near this point.

On the other hand, $F_{3}=z\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}+\sin z$, and at the point $(0,1,0)$, this is equal to 0 . Therefore the implicit function theorem does not apply, and we cannot conclude that it can be solved uniquely for z near this point.
8.2.5 Let $F(x, y, z)=z^{3}+\left(x^{2}+y^{2}\right) z+1$. Then $F_{3}=3 z^{2}+x^{2}+y^{2}$. This is positive everywhere except at the point $(0,0,0)$. This point is not on the surface $F(x, y, z)=0$. Therefore F_{3} is nonzero at all points of the surface, so we can solve for z everywhere. Its partial derivatives are given by the usual formulas: for example,

$$
\frac{\partial z}{\partial x}=-\frac{F_{1}}{F_{3}}=-\frac{2 x z}{3 z^{2}+x^{2}+y^{2}}
$$

This is continuous as long as the denominator is nonzero, and since it is nonzero at all points of the surface, this is continuous everywhere. A similar computation works for $\partial z / \partial y$.

Alternatively, you can view the equation $F(x, y, z)=0$ as a cubic equation in z, and you can look up the solution to a cubic:

$$
z=\sqrt[3]{-\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{\left(x^{2}+y^{2}\right)^{3}}{27}}}+\sqrt[3]{-\frac{1}{2}-\sqrt{\frac{1}{4}+\frac{\left(x^{2}+y^{2}\right)^{3}}{27}}}
$$

Computing the partials is more annoying, but at least they won't be in terms of z.
8.2.20 Let $F(x, y)=x e^{y}-y+1$. To solve $F(x, y)=0$ for y in terms of x near $\left(e^{-2}, 2\right)$, we need to know whether $\partial F / \partial y$ is nonzero at that point.

$$
\frac{\partial F}{\partial y}=x e^{y}-1
$$

This is zero at $\left(e^{-2}, 2\right)$, so we don't know if it is possible to write it in the form $y=f(x)$. On the other hand,

$$
\frac{\partial F}{\partial x}=e^{y}
$$

and this is nonzero everywhere, in particular at the point $\left(e^{-2}, 2\right)$. So we can solve for x in terms of y. Of course this is easy to do explicitly:

$$
x=e^{-y}(y-1) .
$$

From the plot below you can see that in fact it is not possible to solve for y in terms of x near the point $\left(e^{-2}, 2\right)$: to the left of that point, vertical lines hit the graph in two places, not one.

