7.2.1 On the x-axis, the function $f(x, y)$ is equal to zero; thus $f_{1}(0,0)=0$. Similarly, $f_{2}(0,0)=0$. Away from the origin, we compute $f_{1}(x, y)$ and $f_{2}(x, y)$ by using the usual derivative formulas:

$$
\begin{aligned}
& f_{1}(x, y)=y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}+x y \frac{(\text { big mess })}{\left(x^{2}+y^{2}\right)^{2}} \\
& f_{2}(x, y)=x \frac{x^{2}-y^{2}}{x^{2}+y^{2}}+x y \frac{(\text { big mess })}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Thus at points $(0, y)$ with $y \neq 0$, we have

$$
f_{1}(0, y)=y \frac{0-y^{2}}{0+y^{2}}=-y .
$$

Since $f_{1}(0,0)=0$, we have $f_{1}(0, y)=-y$ for all y.
Similarly, at points $(x, 0)$ with $x \neq 0$, we have

$$
f_{2}(x, 0)=x \frac{x^{2}}{x^{2}}=x
$$

and since $f_{2}(0,0)=0$, we have $f_{2}(x, 0)=x$ for all x.
In general, to compute the partial derivative $g_{2}(a, b)$ of some function $g(x, y)$ at the point (a, b), you only need to know $g(a, y)$: fix the first coordinate and let the second coordinate vary. Thus you obtain $g_{2}(a, b)$ by taking the derivative of the function $g(a, y)$ with respect to y, and then plugging in $y=b$.

So in our situation, to compute $f_{12}(0,0)$, we take the derivative of $f_{1}(0, y)$ with respect to y, and then we plug in $y=0$. Similar remarks hold for $f_{21}(0,0)$. From the earlier calculations, therefore, we get

$$
f_{12}(0,0)=-1, \quad f_{21}(0,0)=1
$$

7.4.3 Let $(a, b)=(0,0)$ and let $(h, k)=(\pi / 3, \pi / 6)$. Then the mean value theorem says that

$$
F\left(\frac{\pi}{3}, \frac{\pi}{6}\right)-F(0,0)=F_{1}\left(\frac{\pi}{3} \theta, \frac{\pi}{6} \theta\right) \frac{\pi}{3}+F_{2}\left(\frac{\pi}{3} \theta, \frac{\pi}{6} \theta\right) \frac{\pi}{6}
$$

Computing F_{1} and F_{2}, and then plugging in all of the numbers, yields the desired result.
7.5.1 Since all of $F(x, y), F_{1}(x, y), F_{2}(x, y), F_{11}(x, y)$, and $F_{22}(x, y)$ have a factor of $\sin x$ or $\sin y$, they all give zero at the point $(x, y)=(0,0)$. On the other hand, $F_{12}(x, y)=\cos x \cos y$, so $F_{12}(0,0)=1$. We also note (for the reminder term) that $F_{111}(x, y)=-\cos x \sin y, F_{112}(x, y)=-\sin x \cos y, F_{122}(x, y)=-\cos x \sin y$, and $F_{222}(x, y)=-\sin x \cos y$. Thus Taylor's formula with $n=2$ gives

$$
F(h, k)=h k+\frac{1}{3!}\left(-\cos (\theta h) \sin (\theta k) h^{3}-3 \sin (\theta h) \cos (\theta k) h^{2} k-3 \cos (\theta h) \sin (\theta k) h k^{2}-\sin (\theta h) \cos (\theta k) k^{3}\right)
$$

for some θ between 0 and 1 .
7.5.2 This is another straightforward computation. The answer is

$$
F(h, k)=1-h^{2}-k^{2}+\frac{1}{3!}\left(\sin (\theta h) \cos (\theta k) h^{3}+3 \cos (\theta h) \sin (\theta k) h^{2} k+3 \sin (\theta h) \cos (\theta k) h k^{2}+\cos (\theta h) \sin (\theta k) k^{3}\right)
$$

for some θ between 0 and 1 .

