
Chain rule problem
(a) Plug ~g(t) into f (x,y) to get h(t):

h(t) =

{
(2t)(t2)
4t2+t2 if t 6= 0
0 if t = 0

}
=

2
5

t.

Thus h′(t) = 2/5 for all t. In particular, h′(0) = 2/5.
(b) Write the components of ~g(t) as (g1(t),g2(t)). According to the chain rule,

h′(t) =
∂ f
∂x

dg1

dt
+

∂ f
∂y

dg2

dt
.

At t = 0, we have ~g(t) = (0,0), so this equation becomes

h′(0) =
∂ f
∂x

(0,0)
dg1

dt
(0)+

∂ f
∂y

(0,0)
dg2

dt
(0).

By computations like ones we’ve done several times before, we find that

∂ f
∂x

(0,0) = 0,
∂ f
∂y

(0,0) = 0

Thus according to the chain rule, h′(0) = 0.
(c) Since the chain rule doesn’t work here, some of its hypotheses must not hold for the functions f (t) and ~g(t).

The function ~g(t) is perfectly well-behaved, so we conclude that f (t) is not differentiable at (0,0).
(This is not too surprising, given its definition.)

6.6.2 We have g(x) = F(x, f (x)) for some unspecified function F(x,y), and we know that G(x, f (x)) = 0. Let’s try to
compute g′(x): by the chain rule,

g′(x) =
d
dx

F(x, f (x)) = F1
dx
dx

+F2
d f
dx

= F1 +F2 f ′(x).

We don’t know what f ′(x) is, but we can extract some information about it from the condition G(x, f (x)) = 0. Let
h(x) = G(x, f (x)). Then h′(x) = 0 (since h(x) = 0 for all x), but we can also compute h′(x) using the chain rule:

0 = h′(x) = G1 +G2
d f
dx

.

Therefore f ′(x) =−G1/G2. (Indeed, this fits into the pattern in equation (6.6-4) in the book.) Therefore

g′(x) = F1 +F2(−G1/G2).

Put everything over a common denominator to get the desired result,

g′(x) =
F1G2−F2G1

G2
.

6.6.6 I will start by computing the various partial derivatives: by formula (6.6-4),(
∂x
∂y

)
z
=−

∂F
∂y
∂F
∂x

,

(
∂y
∂ z

)
x
=−

∂F
∂ z
∂F
∂y

,

(
∂ z
∂x

)
y
=−

∂F
∂x
∂F
∂ z

.

Multiplying these together yields (
−

∂F
∂y
∂F
∂x

)(
−

∂F
∂ z
∂F
∂y

)(
−

∂F
∂x
∂F
∂ z

)
= (−1)3 =−1.
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6.6.11 Let G(x,y,z) = F(x+ y+ z,x2 + y2 + z2). Then

∂ z
∂x

=−
∂G
∂x
∂G
∂ z

=−F1 +2xF2

F1 +2zF2
,

∂ z
∂y

=−
∂G
∂y
∂G
∂ z

=−F1 +2yF2

F1 +2zF2
.

Now look at the quantity on the left side of the purported equation:

(y− x)+(y− z)
∂ z
∂x

+(z− x)
∂ z
∂y

= (y− x)− (y− z)
F1 +2xF2

F1 +2zF2
− (z− x)

F1 +2yF2

F1 +2zF2

= (y− x)
F1 +2zF2

F1 +2zF2
− (y− z)

F1 +2xF2

F1 +2zF2
− (z− x)

F1 +2yF2

F1 +2zF2

=
(y− x)(F1 +2zF2)+(z− y)(F1 +2xF2)+(x− z)(F1 +2yF2)

F1 +2zF2
.

Now everything in the numerator cancels, and you get zero.

6.8.1 We want to maximize the volume V = xyz of a box with side lengths x, y, and z, subject to the constraint that the
corner (x,y,z) lies on the plane x

a + y
b + z

c = 1, where a,b,c > 0 and x,y,z≥ 0.
Following Lagrange’s method, we set

u = xyz+λ

( x
a

+
y
b

+
z
c

)
and set the partial derivatives of u equal to zero:

yz+λ/a = 0, xz+λ/b = 0, xy+λ/c = 0.

Now do some algebra. For example, you might use the first equation to write λ in terms of y and z, plug that into the
second and third equations to write each of x and z in terms of y. Then plug all of these into the restraint equation and
solve for y. Once you know y, you can get x and z. The result is: there is only one critical point, and it occurs when
x = a/3, y = b/3, z = c/3. The corresponding volume is V = abc/27.

Why is this a maximum? Well, we should check the boundary points; these occur when x = 0, y = 0, or z = 0.
Clearly the volume is zero in all these cases. Since we are working with a closed region (the portion of the plane
x
a + y

b + z
c = 1 for which x ≥ 0, y ≥ 0, and z ≥ 0), the function is guaranteed to have a maximum value. Since it is

positive away from the border, that maximum value does not occur on the border, so it occurs at a critical point. Since
there is only one critical point, that must be the maximum. (In contrast, the minimum value is zero, attained all along
the boundary.)

6.8.3 Suppose that the triangle in question has angles x, y, and z; then we have the constraint that x + y + z = π (and
that x,y,z > 0). We want to show that the function F(x,y,z) = sin(x)sin(y)sin(z), subject to this constraint, attains a
maximum when x = y = z. We set

u = sin(x)sin(y)sin(z)+λ (x+ y+ z)

and set the partial derivatives of y equal to zero:

cosxsinysinz+λ = 0, sinxcosysinz+λ = 0, sinxsinycosz+λ = 0.

Subtract the second equation from the first and do a little cancellation to get

cosxsiny = sinxcosy,

and thus cotx = coty. (You could use tangent instead of cotangent, but tanx will be undefined if x = π/2, while cotx is
defined for all x with 0 < x < π .) Similarly, you can get coty = cotz. The cotangent function is one-to-one on angles
between 0 and π , so this means that x = y = z. Therefore the only critical point occurs when the triangle is equilateral
and all of the angles are π/3. Since sinπ/3 =

√
3/2, the function has the value 3

√
3/2 at this point.

To see that this critical point gives a maximum, we allow x, y, and z to be 0, and then we are working over a closed
region: the portion of the plane x + y+ z = π where 0≤ x,y,z≤ π . Along the boundary, at least one of x, y, z will be
zero, in which case its sine will be zero, and so the function F(x,y,z) will be zero. This is less than the value at the
critical point, so the critical point must give the maximum.
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