
6.3.2 Let f (x,y) = xy(c−x−y). Since we are working over a closed region, we know that f (x,y) achieves its maximum
somewhere either at a boundary point or at a critical point in the interior. We can see that f (x,y) = 0 for points (x,y)
on the boundary, because for those points either x = 0, y = 0, or x + y = c (so c− x− y = 0). In contrast, f (x,y) is
positive for points in the interior of the triangle (because in the interior, x > 0, y > 0, and c > x + y so c− x− y > 0,
and thus f (x,y) is the product of three positive factors), so the maximum value will be at a critical point in the interior.
We look for the critical points by computing the partial derivatives

∂ f
∂x

= cy−2xy− y2 = y(c−2x− y),

∂ f
∂y

= cx−2xy− x2 = x(c− x−2y)

and setting them equal to zero:
y(c−2x− y) = 0, x(c− x−2y) = 0.

If a product y(c− 2x− y) is zero, then one of the factors must be zero. We may exclude the case y = 0, since that
would give us a point on the boundary, and similarly for the other equation. Thus we have the equations

c−2x− y = 0, c− x−2y = 0.

Solve these for x and y to get
x = c/3, y = c/3.

This is the only critical point, and as argued above, this means that this must be where f (x,y) achieves its maximum.
The maximum value is therefore

f (c/3,c/3) = c3/27.

6.3.4 Note that as x goes to infinity, x2 goes to infinity. Since f (x,y) = x2 + (other terms) and each of the other terms
is positive, f (x,y) goes to infinity as x goes to infinity. Therefore f (x,y) has no absolute maximum.

(Indeed, as x2 +y2→∞, that is, as (x,y) moves in any direction in the first quadrant radially away from the origin,
f (x,y) goes to ∞. Because of the terms (576/x) and (576/y), f (x,y) also goes to infinity as you approach the x-axis
or the y-axis.)

6.3.6 First we find the critical points by setting the partial derivatives equal to zero:

2y− x(1− x2− y2)−1/2 = 0,

2x− y(1− x2− y2)−1/2 = 0.

The first one says that x = 2y(1− x2− y2)1/2. Plug this into the second one:

4y(1− x2− y2)1/2− y(1− x2− y2)−1/2 = 0,

or
y(4(1− x2− y2)−1) = 0.

Therefore either y = 0 or 1− x2− y2 = 1/4. In the first case we find that x = 0, and we have a critical point (0,0). In
the second case we get (1− x2− y2)1/2 = 1/2, so our equations become

2y−2x = 0, 2x−2y = 0.

Thus we have x = y and 1− x2− y2 = 1/4, so we get two critical points: (−
√

3/8,−
√

3/8) and (
√

3/8,
√

3/8).
We plug the three critical points into the function:

f (0,0) = 1, f (−
√

3/8,−
√

3/8) = 5/4, f (
√

3/8,
√

3/8) = 5/4.
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Now we look at the boundary points: we assume that x2 + y2 = 1. For these points, f (x,y) = 2xy. We can do
this directly (by substituting y = ±

√
1− x2 and finding the max/min for the resulting two functions g(x) = x

√
1− x2

and h(x) =−x
√

1− x2), but it also might be fun to switch to polar coordinates: x = r cosθ = cosθ (since r = 1) and
y = sinθ . Thus we want to find the max/min for the function F(θ) = 2cosθ sinθ for 0≤ θ ≤ 2π . The function F is
zero at the end points; let’s look for critical points.

F ′(θ) =−2sin2
θ +2cos2

θ = 2cos(2θ).

This is zero when θ = π/4,3π/4,5π/4,7π/4. Using the second derivative test, or just plugging in these points,
shows that F(θ) has a maximum value of 1 and a minimum value of −1. (You also might be able to recognize that
F(θ) = sin2θ , a function which oscillates between −1 and 1, so you can do this part without any calculus.)

Thus, combining the boundary information with the critical point information, we find that f (x,y) has a minimum
value of−1 (achieved on the boundary, at the points (cos3π/4,sin3π/4)= (−1/

√
2,1/
√

2) and (cos7π/4,sin7π/4)=
(1/
√

2,−1/
√

2)) and a maximum value of 5/4 (achieved at the interior points (−
√

3/8,−
√

3/8) and (
√

3/8,
√

3/8)).

6.4.7ab (a) If we hold x constant at zero, then f (0,y) = 0 for all y; therefore f2(0,y) = 0 for all y, and in particular,
f2(0,0) = 0. Similarly, f1(0,0) = 0.

(b) If x = y then f (x,y) =
√
|xy|=

√
|x2|=

√
x2 = |x|. Thus if you look at the piece of the surface along the line

y = x, it is a curve whose graph looks like the absolute value function: it has a corner at the origin. Such a curve does
not have a tangent line at the origin, so the function f (x,y) will not have a tangent plane at the origin.

6.5.8 First I’ll compute the various partial derivatives of u:

∂u
∂x

= F1
−y2

(xy)2 +F2
−z2

(xz)2 ,

∂u
∂y

= F1
x2

(xy)2

∂u
∂ z

= F2
x2

(xz)2

We don’t know what the function F is, so we have to leave F1 and F2 as unknown functions. Anyway, now we plug in
to the formula in the problem:

x2 ∂u
∂x

+ y2 ∂u
∂y

+ z2 ∂u
∂ z

= F1
−y2 + y2

(xy)2 +F2
−z2 + z2

(xz)2 = 0,

as desired.

6.5.15 We are told that “u is a function of r,” so we have no way of simplifying du
dr . So let’s work on the left side of

the equation; let’s start by computing the various partial derivatives:

∂u
∂x

=
du
dr

∂ r
∂x

=
du
dr

x(x2 + y2 + z2)−1/2 =
du
dr

x
r
.

Similarly,
∂u
∂y

=
du
dr

y
r
,

∂u
∂ z

=
du
dr

z
r
.

Therefore (
∂u
∂x

)2

+
(

∂u
∂y

)2

+
(

∂u
∂ z

)2

=
(

du
dr

x
r

)2

+
(

du
dr

y
r

)2(du
dr

z
r

)2

=
(

du
dr

)2 x2 + y2 + z2

r2 =
(

du
dr

)2

,

as desired.
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