6.3.2 Let f(x,y) =xy(c—x—y). Since we are working over a closed region, we know that f(x,y) achieves its maximum
somewhere either at a boundary point or at a critical point in the interior. We can see that f(x,y) = 0 for points (x,y)
on the boundary, because for those points either x =0, y =0, or x+y = ¢ (so ¢ —x —y = 0). In contrast, f(x,y) is
positive for points in the interior of the triangle (because in the interior, x >0,y > 0,and ¢ > x+ysoc—x—y >0,
and thus f(x,y) is the product of three positive factors), so the maximum value will be at a critical point in the interior.
We look for the critical points by computing the partial derivatives

of

oL =2y =yt =y(e—2c—y),
d
a—§ = cx—2xy —x* = x(c—x—2y)

and setting them equal to zero:
y(ie—2x—y)=0, x(c—x—2y)=0.

If a product y(c — 2x — y) is zero, then one of the factors must be zero. We may exclude the case y = 0, since that
would give us a point on the boundary, and similarly for the other equation. Thus we have the equations

c—2x—y=0, c—x—2y=0.
Solve these for x and y to get
x=c/3, y=c/3.

This is the only critical point, and as argued above, this means that this must be where f(x,y) achieves its maximum.
The maximum value is therefore

f(c/3,¢/3)=c%/217.

6.3.4 Note that as x goes to infinity, x> goes to infinity. Since f(x,y) = x> + (other terms) and each of the other terms
is positive, f(x,y) goes to infinity as x goes to infinity. Therefore f(x,y) has no absolute maximum.

(Indeed, as x> 4 y*> — oo, that is, as (x,y) moves in any direction in the first quadrant radially away from the origin,
f(x,y) goes to . Because of the terms (576/x) and (576/y), f(x,y) also goes to infinity as you approach the x-axis
or the y-axis.)

6.3.6 First we find the critical points by setting the partial derivatives equal to zero:
2y —x(1-x>—y*)~12 =0,
2x—y(1—x*—y»)~12 =0.

The first one says that x = 2y(1 — x*> —y?)!/2. Plug this into the second one:

4y(1 - _y2)l/2 —y(1-2 _y2>71/2 =0,

> y(4(1—x*—y*)—1)=0.

Therefore either y = 0 or 1 —x? —y?> = 1/4. In the first case we find that x = 0, and we have a critical point (0,0). In
the second case we get (1 — x> —y?)!/2 = 1/2, so our equations become

2y—2x=0, 2x—2y=0.

Thus we have x = y and 1 —x% —y?> = 1/4, so we get two critical points: (—+/3/8,—+/3/8) and (1/3/8,+/3/8).

We plug the three critical points into the function:

F0,0)=1, f(=/3/8,—\/3/8)=5/4, f(,/3/8,\/3/8)=5/4.



Now we look at the boundary points: we assume that x*> +y*> = 1. For these points, f(x,y) = 2xy. We can do
this directly (by substituting y = +v/1 —x2 and finding the max/min for the resulting two functions g(x) = xv/'1 —x?
and h(x) = —xv/1 —x2), but it also might be fun to switch to polar coordinates: x = rcos 6 = cos 8 (since r = 1) and
y = sin6. Thus we want to find the max/min for the function F(0) = 2cos0sin 6 for 0 < 6 < 2x. The function F is
zero at the end points; let’s look for critical points.

F'(6) = —2sin? 6 +2cos® 6 = 2cos(26).

This is zero when 6 = /4,37 /4,5n/4,77/4. Using the second derivative test, or just plugging in these points,
shows that F(6) has a maximum value of 1 and a minimum value of —1. (You also might be able to recognize that
F(6) =sin20, a function which oscillates between —1 and 1, so you can do this part without any calculus.)

Thus, combining the boundary information with the critical point information, we find that f(x,y) has a minimum
value of —1 (achieved on the boundary, at the points (cos 37 /4,sin371/4) = (—1/+/2,1/+/2) and (cos 7x /4,sin T /4) =
(1/4/2,—1/+/2)) and a maximum value of 5/4 (achieved at the interior points (—+/3/8,—+/3/8) and (1/3/8,+/3/8)).
6.4.7ab (a) If we hold x constant at zero, then f(0,y) = 0 for all y; therefore f>(0,y) = 0 for all y, and in particular,
/2(0,0) = 0. Similarly, f1(0,0) = 0.

(b) If x = y then f(x,y) = /|xy| = \/|x2] = V/x2 = |x|. Thus if you look at the piece of the surface along the line

Yy = x, it is a curve whose graph looks like the absolute value function: it has a corner at the origin. Such a curve does
not have a tangent line at the origin, so the function f(x,y) will not have a tangent plane at the origin.

6.5.8 First I’ll compute the various partial derivatives of u:

du —y? -7
7 =i e
du_ . &

Iy )
du x2

We don’t know what the function F is, so we have to leave F| and F, as unknown functions. Anyway, now we plug in
to the formula in the problem:

2(9“ 28“ Zau: _y2+y2 2_Z2+Z2 -0
(xy)? (x2)? 7

as desired.

6.5.15 We are told that “u is a function of r,” so we have no way of simplifying %. So let’s work on the left side of
the equation; let’s start by computing the various partial derivatives:

Similarly,
du duy Jdu duz
B drr 9 drr
Therefore
ou\? ou\? ou\? dux\* duy\* (duz\?
(ax> +(ay> +(az) :(dw) *(m) (m)
du\* 2 +y? + 22 du\?
() g
as desired.



