6.3.2 Let $f(x, y)=x y(c-x-y)$. Since we are working over a closed region, we know that $f(x, y)$ achieves its maximum somewhere either at a boundary point or at a critical point in the interior. We can see that $f(x, y)=0$ for points (x, y) on the boundary, because for those points either $x=0, y=0$, or $x+y=c$ (so $c-x-y=0$). In contrast, $f(x, y)$ is positive for points in the interior of the triangle (because in the interior, $x>0, y>0$, and $c>x+y$ so $c-x-y>0$, and thus $f(x, y)$ is the product of three positive factors), so the maximum value will be at a critical point in the interior. We look for the critical points by computing the partial derivatives

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=c y-2 x y-y^{2}=y(c-2 x-y) \\
& \frac{\partial f}{\partial y}=c x-2 x y-x^{2}=x(c-x-2 y)
\end{aligned}
$$

and setting them equal to zero:

$$
y(c-2 x-y)=0, \quad x(c-x-2 y)=0
$$

If a product $y(c-2 x-y)$ is zero, then one of the factors must be zero. We may exclude the case $y=0$, since that would give us a point on the boundary, and similarly for the other equation. Thus we have the equations

$$
c-2 x-y=0, \quad c-x-2 y=0
$$

Solve these for x and y to get

$$
x=c / 3, \quad y=c / 3
$$

This is the only critical point, and as argued above, this means that this must be where $f(x, y)$ achieves its maximum. The maximum value is therefore

$$
f(c / 3, c / 3)=c^{3} / 27
$$

6.3.4 Note that as x goes to infinity, x^{2} goes to infinity. Since $f(x, y)=x^{2}+$ (other terms) and each of the other terms is positive, $f(x, y)$ goes to infinity as x goes to infinity. Therefore $f(x, y)$ has no absolute maximum.
(Indeed, as $x^{2}+y^{2} \rightarrow \infty$, that is, as (x, y) moves in any direction in the first quadrant radially away from the origin, $f(x, y)$ goes to ∞. Because of the terms $(576 / x)$ and $(576 / y), f(x, y)$ also goes to infinity as you approach the x-axis or the y-axis.)
6.3.6 First we find the critical points by setting the partial derivatives equal to zero:

$$
\begin{aligned}
& 2 y-x\left(1-x^{2}-y^{2}\right)^{-1 / 2}=0, \\
& 2 x-y\left(1-x^{2}-y^{2}\right)^{-1 / 2}=0 .
\end{aligned}
$$

The first one says that $x=2 y\left(1-x^{2}-y^{2}\right)^{1 / 2}$. Plug this into the second one:

$$
4 y\left(1-x^{2}-y^{2}\right)^{1 / 2}-y\left(1-x^{2}-y^{2}\right)^{-1 / 2}=0
$$

or

$$
y\left(4\left(1-x^{2}-y^{2}\right)-1\right)=0
$$

Therefore either $y=0$ or $1-x^{2}-y^{2}=1 / 4$. In the first case we find that $x=0$, and we have a critical point $(0,0)$. In the second case we get $\left(1-x^{2}-y^{2}\right)^{1 / 2}=1 / 2$, so our equations become

$$
2 y-2 x=0, \quad 2 x-2 y=0
$$

Thus we have $x=y$ and $1-x^{2}-y^{2}=1 / 4$, so we get two critical points: $(-\sqrt{3 / 8},-\sqrt{3 / 8})$ and $(\sqrt{3 / 8}, \sqrt{3 / 8})$.
We plug the three critical points into the function:

$$
f(0,0)=1, \quad f(-\sqrt{3 / 8},-\sqrt{3 / 8})=5 / 4, \quad f(\sqrt{3 / 8}, \sqrt{3 / 8})=5 / 4
$$

Now we look at the boundary points: we assume that $x^{2}+y^{2}=1$. For these points, $f(x, y)=2 x y$. We can do this directly (by substituting $y= \pm \sqrt{1-x^{2}}$ and finding the max $/ \mathrm{min}$ for the resulting two functions $g(x)=x \sqrt{1-x^{2}}$ and $h(x)=-x \sqrt{1-x^{2}}$), but it also might be fun to switch to polar coordinates: $x=r \cos \theta=\cos \theta$ (since $r=1$) and $y=\sin \theta$. Thus we want to find the max/min for the function $F(\theta)=2 \cos \theta \sin \theta$ for $0 \leq \theta \leq 2 \pi$. The function F is zero at the end points; let's look for critical points.

$$
F^{\prime}(\theta)=-2 \sin ^{2} \theta+2 \cos ^{2} \theta=2 \cos (2 \theta)
$$

This is zero when $\theta=\pi / 4,3 \pi / 4,5 \pi / 4,7 \pi / 4$. Using the second derivative test, or just plugging in these points, shows that $F(\theta)$ has a maximum value of 1 and a minimum value of -1 . (You also might be able to recognize that $F(\theta)=\sin 2 \theta$, a function which oscillates between -1 and 1 , so you can do this part without any calculus.)

Thus, combining the boundary information with the critical point information, we find that $f(x, y)$ has a minimum value of -1 (achieved on the boundary, at the points $(\cos 3 \pi / 4, \sin 3 \pi / 4)=(-1 / \sqrt{2}, 1 / \sqrt{2})$ and $(\cos 7 \pi / 4, \sin 7 \pi / 4)=$ $(1 / \sqrt{2},-1 / \sqrt{2})$) and a maximum value of $5 / 4$ (achieved at the interior points $(-\sqrt{3 / 8},-\sqrt{3 / 8})$ and $(\sqrt{3 / 8}, \sqrt{3 / 8})$).
6.4.7ab (a) If we hold x constant at zero, then $f(0, y)=0$ for all y; therefore $f_{2}(0, y)=0$ for all y, and in particular, $f_{2}(0,0)=0$. Similarly, $f_{1}(0,0)=0$.
(b) If $x=y$ then $f(x, y)=\sqrt{|x y|}=\sqrt{\left|x^{2}\right|}=\sqrt{x^{2}}=|x|$. Thus if you look at the piece of the surface along the line $y=x$, it is a curve whose graph looks like the absolute value function: it has a corner at the origin. Such a curve does not have a tangent line at the origin, so the function $f(x, y)$ will not have a tangent plane at the origin.
6.5.8 First I'll compute the various partial derivatives of u :

$$
\begin{gathered}
\frac{\partial u}{\partial x}=F_{1} \frac{-y^{2}}{(x y)^{2}}+F_{2} \frac{-z^{2}}{(x z)^{2}} \\
\frac{\partial u}{\partial y}=F_{1} \frac{x^{2}}{(x y)^{2}} \\
\frac{\partial u}{\partial z}=F_{2} \frac{x^{2}}{(x z)^{2}}
\end{gathered}
$$

We don't know what the function F is, so we have to leave F_{1} and F_{2} as unknown functions. Anyway, now we plug in to the formula in the problem:

$$
x^{2} \frac{\partial u}{\partial x}+y^{2} \frac{\partial u}{\partial y}+z^{2} \frac{\partial u}{\partial z}=F_{1} \frac{-y^{2}+y^{2}}{(x y)^{2}}+F_{2} \frac{-z^{2}+z^{2}}{(x z)^{2}}=0
$$

as desired.
6.5.15 We are told that " u is a function of r," so we have no way of simplifying $\frac{d u}{d r}$. So let's work on the left side of the equation; let's start by computing the various partial derivatives:

$$
\frac{\partial u}{\partial x}=\frac{d u}{d r} \frac{\partial r}{\partial x}=\frac{d u}{d r} x\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}=\frac{d u}{d r} \frac{x}{r}
$$

Similarly,

$$
\frac{\partial u}{\partial y}=\frac{d u}{d r} \frac{y}{r}, \quad \frac{\partial u}{\partial z}=\frac{d u}{d r} \frac{z}{r}
$$

Therefore

$$
\begin{aligned}
\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial u}{\partial z}\right)^{2} & =\left(\frac{d u x}{d r} \frac{x}{r}\right)^{2}+\left(\frac{d u}{d r} \frac{y}{r}\right)^{2}\left(\frac{d u}{d r} \frac{z}{r}\right)^{2} \\
& =\left(\frac{d u}{d r}\right)^{2} \frac{x^{2}+y^{2}+z^{2}}{r^{2}}=\left(\frac{d u}{d r}\right)^{2}
\end{aligned}
$$

as desired.

