
Mathematics 326 Midterm Exam

Instructions: This is a take-home exam. Do not consult with anyone about the exam except for
Professor Palmieri. Explain all of your answers and write legibly. If you find a solution in a book
or some other source, please provide a reference. Check your answers carefully; there will be no
opportunity to turn in revisions for this exam.

Due in class on Friday, November 21, 2008.

1. Suppose that

F (x, y, u, v) = x2 + y2 − 2ux + 1,

G(x, y, u, v) = x2 + y2 + 2vy − 1.

(a) (2 points) Interpret u and v as parameters and plot the curves F = 0, G = 0 in the
xy-plane, assuming u2 ≥ 1.

Solution: Complete the square: F = 0 and G = 0 become, respectively,

(x− u)2 + y2 = u2 − 1,

x2 + (y + v)2 = v2 + 1.

The graphs of these are circles: the graph of F = 0 is a circle with radius
√

u2 − 1
centered at (u, 0), and the graph of G = 0 is a circle with radius

√
v2 + 1 centered at

(0,−v). Here is a picture with u = 2 and v = 1:

(Note that if u2 = 1, then the equation F = 0 has just one solution, (u, 0), which you
can think of as a circle of radius 0.)

(b) (3 points) Now suppose x0, y0, u0, v0 satisfy the equations F = 0, G = 0, and that u2
0 > 1.

Explain geometrically why it is reasonable to expect that, if u and v differ but slightly
from u0 and v0, respectively, the equations F = 0, G = 0 will determine a unique point
(x, y), if this point is required to be sufficiently near (x0, y0).
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Solution: The end of the first sentence (“u2
0 > 1”) tells us that the F = 0 circle has

positive radius. The rest of the first sentence tells us that we have a point which is
a solution to the equations F = 0 and G = 0, so we have parameters u0 and v0 such
that the circles intersect at a point (x0, y0). The situation could be as in the picture,
where (x0, y0) is one of the two points of intersection.
Now, if (u, v) is close to (u0, v0), then the corresponding circles are close to the original
circles. If the circles for (u0, v0) intersect at a point (x0, y0), and if we change the radii
and centers just a little bit, then the new circles will intersect at a point near (x0, y0).
The new circles might intersect at a second point, also, but that point won’t be very
close to (x0, y0); thus there will be a unique point (x, y) of intersection near (x0, y0).
We have to rule out one possible problem: if the circles for the parameters (u0, v0)
were tangent, just intersecting at a single point, then changing (u0, v0) a little might
result in no intersection points (bad: no solutions) or two intersection points (bad: no
unique solution near the point ((x0, y0)). The G = 0 circle always goes through the
points (1, 0) and (−1, 0): just plug x = ±1, y = 0 into the equation for G. Also, as
long as u2 > 1, one of these points is inside the F = 0 circle: if u > 1, then (1, 0) is
inside the circle, and if u < −1, then (−1, 0) is. Also note that the point (0,−2v) is on
the G = 0 circle but outside of the F = 0 circle. Therefore some points of the G = 0
circle are outside of the F = 0 circle, and some points of the G = 0 circle are inside of
it. Thus the two circles cannot be tangent.

(c) (5 points) Show that a set of values x0, y0, u0, v0 cannot satisfy the three equations

F = 0, G = 0,
∂(F,G)
∂(x, y)

= 0 unless u2
0 = 1. Use this result and an appropriate version of

the implicit function theorem for simultaneous equations to give an analytical explanation
of the situation described in part (b).

Solution: By the work done in part (a), for the equation F = 0 to have any solutions at
all, we need to assume that u2

0 ≥ 1.

The Jacobian J is equal to

J =
∂(F,G)
∂(x, y)

= det
[
2x− 2u 2y

2x 2y + 2v

]
= 4(xv − uy − uv).

Suppose that F = 0, G = 0, and J = 0 at some point (x0, y0, u0, v0). If we subtract the
equation F = 0 equation from the G = 0 equation, we get 2v0y0 + 2u0x0− 2 = 0; this gives
us these three equations:

x2
0 + y2

0 + 2v0y0 − 1 = 0,

x0v0 − u0y0 − u0v0 = 0,

v0y0 + u0x0 − 1 = 0.

Solving the last two for x0 and y0 gives

x0 =
u0(1 + v2

0)
u2

0 + v2
0

, y0 =
v0(1− u2

0)
u2

0 + v2
0

.
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Plug these into the first equation and do a lot of algebra: you end up with

1
(u2

0 + v2
0)2
(
v4
0 + v2

0(1 + u2
0) + u2

0

)
(1− u2

0) = 0.

The first two factors are positive, so the only way for this to be zero is if u2
0 = 1.

Therefore if P = (x0, y0, u0, v0) is a point which satisfies F = 0 and G = 0 and also has

u2
0 > 1, then the Jacobian

∂(F,G)
∂(x, y)

must be nonzero. Therefore in a neighborhood of the

point P , it is possible in the equations F = 0 and G = 0 to solve for x and y in terms of u
and v; stated differently, given u and v near u0 and v0, there is a unique point (x, y) near
(x0, y0) which is a simultaneous solution to F = 0 and G = 0.

(This is problem 8 from section 8.3.)

2. Let F (x, y, z) = (x + 1)(y − 1) 3
√

z − 3xyz2 + sin 2y and consider the equation F (x, y, z) = 0 in
a neighborhood of the point (0, 0, 0).

(a) (8 points) Does the implicit function theorem say that it is possible to solve for x in terms
of y and z? For y in terms of x and z? For z in terms of x and y?

Solution: To solve for x in terms of y and z, the implicit function theorem requires
that ∂F/∂x be nonzero at (0, 0, 0), and similarly for the other cases. So I need to
compute the partial derivatives of F :

∂F

∂x
= (y − 1) 3

√
z − 3yz2,

∂F

∂y
= (x + 1) 3

√
z − 3xz2 + 2 cos 2y,

∂F

∂z
=

1
3

(x + 1)(y − 1)z−2/3 − 6xyz.

At the point (0, 0, 0), therefore, we have

∂F

∂x
= 0,

∂F

∂y
= 2,

∂F

∂z
is undefined.

So according to the implicit function theorem, we can solve for y in terms of x and z,
near the origin. We cannot tell, just from the theorem, about solving for x or for z.
(The implicit function theorem does not say that if its hypotheses fail, then you can’t
solve. If the hypotheses fail, then the conclusions may or may not be true. So it is
correct to say that we cannot tell whether it is possible to solve for z, for example, in
terms of x and y; it is incorrect to conclude, just from the theorem, that we cannot
solve for z.)
(Technically, actually, the implicit function theorem requires all of the partials to be
continuous in a neighborhood of the point in question. Since ∂F/∂z is undefined, this
hypothesis is not satisfied, so the theorem doesn’t apply at all.)
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(b) (2 points) Forget about the implicit function theorem. Can you solve for x in terms of y
and z in a neighborhood of (0, 0, 0)?

Solution: Basic algebra turns the equation F (x, y, z) = 0 into

x =
− sin 2y − (y − 1) 3

√
z

(y − 1) 3
√

z − 3yz2
.

When y = z = 0, there is a zero in the denominator, so this fraction is undefined.
Thus you cannot solve for x in terms of y and z near the origin. (Note also that the
limit of the right side as (y, z) → (0, 0) is undefined: if you approach (0, 0) along the
y-axis – that is with points of the form (y, 0), then the fraction is undefined for all
such points, and so the limit is undefined.)

3. (10 points) Fix a real number a and find the shortest distance from the point (0, 0, a) to the
surface defined by z = x2 − y2. Use the methods from Section 7.6 in your solution. (Problems
4 and 5 in Section 7.6 are similar.)

Solution: Note that if a = 0, then (0, 0, a) is on the surface, and the distance is zero.

The square of the distance from (0, 0, a) to (x, y, x2 − y2) is

F (x, y, z) = x2 + y2 + (x2 − y2 − a)2.

We want to minimize this function, so we will find the critical points and use the second
derivative test to find the minimum. To find the critical points, we set ∂F/∂x = 0, ∂F/∂y =
0:

2x + 4x(x2 − y2 − a) = 0,

2y − 4y(x2 − y2 − a) = 0,

or equivalently,

x(1 + 2(x2 − y2 − a)) = 0,

y(1− 2(x2 − y2 − a)) = 0.

Thus either x = 0 or 1 + 2(x2 − y2 − a) = 0, and either y = 0 or 1 − 2(x2 − y2 − a) = 0.
This gives four possible combinations:

• If x = 0 and y = 0, we have a critical point, (0, 0).

• If x = 0 and 1 − 2(x2 − y2 − a) = 0, then the second equation becomes 1/2 =
−y2 − a, or y2 = −a − 1/2. Thus we have two critical points, (0,

√
−a− 1/2) and

(0,−
√
−a− 1/2). These obviously only make sense if −a− 1/2 ≥ 0, so if a ≤ −1/2.

(Note that if a = −1/2, then this just produces the point (0, 0) again.)

• Similarly, if 1 + 2(x2 − y2 − a) = 0 and y = 0, then we get two critical points,
(
√

a− 1/2, 0) and (−
√

a− 1/2, 0). These only make sense if a ≥ 1/2. (As above,
note that if a = 1/2, then this just produces the point (0, 0) again.)
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To identify the type of each, we use the second derivative test, which involves calculating
the various second partials of F :

F11 = 2 + 12x2 − 4y2 − 4a,

F12 = −8xy,

F22 = 2− 4x2 + 12y2 + 4a.

Since either x = 0 or y = 0 at each critical point, then F12 = 0 at each critical point.

At (0, 0): F11 = 2− 4a and F11F22 − F 2
12 = (2− 4a)(2 + 4a) = 4− 16a2. Thus if a2 > 1/4,

then 4 − 16a2 is negative, and so this critical point is a saddle point. If a2 < 1/4, then
F11 > 0 and F11F22 − F 2

12 > 0, so we have a minimum. The distance from this point to
(0, 0, a) is |a|.
At (0,±

√
−a− 1/2): F11 = 2 and F11F22−F 2

12 = 16(−1−2a). If a < −1/2, then these are
both positive, and we have a minimum. The distance from each of these points to (0, 0, a)
is
√
−a− 1/4.

Similarly, at (±
√

a− 1/2, 0): F11 = 4(2a − 1) and F11F22 − F 2
12 = 16(2a − 1). As long as

a > 1/2, these are both positive, and we have a minimum. The distance from each of these
points to (0, 0, a) is

√
a− 1/4.

Summarizing: if a < −1/2, then there are three critical points: a saddle at (0, 0) and local
minima at (0,±

√
−a− 1/2). Thus the minimum distance is

√
−a− 1/4. If −1/2 < a <

1/2, then there is one critical point: a local minimum at (0, 0). Thus the minimum distance
is |a|. If a > 1/2, then there are three critical points: a saddle at (0, 0) and local minima
at (±

√
a− 1/2, 0). Thus the minimum distance is

√
a− 1/4.

If a = −1/2 or if a = 1/2, then we seem to have problems, because F11F22 − F 2
12 = 0

at the critical point (0, 0). However, There must be a minimum because of geometric
considerations, and it must occur at the critical point. The critical point has distance |a|
to (0, 0, a), so this is the minimum distance.

4. (10 points) Fix real numbers a, b, and c. Write the Taylor series for the function F (x, y) =
axy + bx2 + c at the point (x, y) = (1, 2); that is, in terms of powers of x − 1 and y − 2. Is
F (x, y) equal to its Taylor series?

Solution: Compute the various partial derivatives of F :

F1 = ay + 2bx, F2 = ax,

F11 = 2b, F12 = a, F22 = 0,

F111 = 0, F112 = 0, F122 = 0, F222 = 0,

and more generally, all of the partials of degree 3 and higher are zero. So we plug into the
formula for the Taylor series to get this:

(2a + b + c) + (2a + 2b)(x− 1) + a(y − 2) +
1
2
(
2b(x− 1)2 + 2a(x− 1)(y − 2)

)
.
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To answer the second question: when you multiply this all out, you get back the original
function F (x, y). Thus F (x, y) equals its Taylor series.


