Mathematics 326 Midterm Exam

\qquad
October 20, 2008
Instructions: This is a closed book exam, no notes or calculators allowed. Please turn off all cell phones, pagers, etc.

1. (10 points) Fix positive numbers a, b, and c. Find the minimum of $x+y+z$ subject to the conditions that $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=1$ and $x, y, z>0$.

Solution: Use the method of Lagrange multipliers: let $u=x+y+z+\lambda\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)$, and set the various partial derivatives of u equal to zero:

$$
0=1-\lambda \frac{a}{x^{2}}, \quad 0=1-\lambda \frac{b}{y^{2}}, \quad 0=1-\lambda \frac{c}{z^{2}}
$$

Use the first equation to solve for $\lambda: \lambda=x^{2} / a$. Plug this into the second equation:

$$
1=\frac{b x^{2}}{a y^{2}} \quad \text { or } \quad y^{2}=b x^{2} / a \quad \text { or } \quad y=\sqrt{\frac{b}{a}} x .
$$

Similarly, the third equation gives

$$
z=\sqrt{\frac{c}{a}} x .
$$

Plug these values for y and z into the constraint equation $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=1$:

$$
1=\frac{a}{x}+b \sqrt{\frac{a}{b}} \frac{1}{x}+c \sqrt{\frac{a}{c}} \frac{1}{x}
$$

Thus $x=a+\sqrt{a b}+\sqrt{a c}$. Our equations for y and z in terms of x then give $y=\sqrt{a b}+b+\sqrt{b c}$ and $z=\sqrt{a c}+\sqrt{b c}+c$. Thus the function $x+y+z$, subject to the above constraint, has one extreme point, and its value at this point is

$$
a+b+c+2 \sqrt{a b}+2 \sqrt{a c}+2 \sqrt{b c} .
$$

Why is this a minimum? Along the constraint surface $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=1$, we can make at least one of x, y, or z very large, which would make the function $x+y+z$ very large. Thus the function has no maximum.
(This doesn't show that the critical point is actually a minimum, but it's good enough reasoning for the timed part of the exam.)
2. Suppose that $F(s, t)$ is some function, and let $u=x^{3} F\left(\frac{y}{x}, \frac{z}{x}\right)$.
(a) (5 points) What is $\frac{\partial u}{\partial x}$?

Solution: This is a simple application of the product rule combined with the chain rule:

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =3 x^{2} F\left(\frac{y}{x}, \frac{z}{x}\right)+x^{3} \frac{\partial}{\partial x} F\left(\frac{y}{x}, \frac{z}{x}\right) \\
& =3 x^{2} F\left(\frac{y}{x}, \frac{z}{x}\right)+x^{3} F_{1}\left(\frac{y}{x}, \frac{z}{x}\right) \cdot\left(-\frac{y}{x^{2}}\right)+x^{2} F_{2}\left(\frac{y}{x}, \frac{z}{x}\right) \cdot\left(-\frac{z}{x^{2}}\right) \\
& =3 x^{2} F\left(\frac{y}{x}, \frac{z}{x}\right)-x y F_{1}\left(\frac{y}{x}, \frac{z}{x}\right)-x z F_{2}\left(\frac{y}{x}, \frac{z}{x}\right)
\end{aligned}
$$

(b) (5 points) Show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=3 u$.

Solution: First compute $\partial u / \partial y$ and $\partial u / \partial z$:

$$
\begin{aligned}
& \frac{\partial u}{\partial y}=x^{3} F_{1}(x, y, z) \frac{1}{x}=x^{2} F_{1} \\
& \frac{\partial u}{\partial z}=x^{3} F_{2}(x, y, z) \frac{1}{x}=x^{2} F_{2}
\end{aligned}
$$

(Here, F stands for $F\left(\frac{y}{x}, \frac{z}{x}\right)$, and similarly for F_{1} and F_{2}.)
Therefore

$$
\begin{aligned}
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z} & =x\left(3 x^{2} F-x y F_{1}-x z F_{2}\right)+y\left(x^{2} F_{1}\right)+z\left(x^{2} F_{2}\right) \\
& =3 x^{3} F-x^{2} y F_{1}-x^{2} z F_{2}+x^{2} y F_{1}+x^{2} z F_{2} \\
& =3 x^{3} F \\
& =3 x^{3} F\left(\frac{y}{x}, \frac{z}{x}\right) \\
& =3 u
\end{aligned}
$$

as desired.
3. (10 points) Let F, g, and h be functions. Suppose that $z=f(x, y)$ satisfies an equation of the form

$$
F(g(x, y, z), h(x, y, z))=0
$$

Show that

$$
\frac{\partial z}{\partial y}=-\frac{F_{1} g_{2}+F_{2} h_{2}}{F_{1} g_{3}+F_{2} h_{3}}
$$

Solution: We apply $\partial / \partial y$ to the equation $F(g(x, y, z), h(x, y, z))=0$, using the fact that z depends on y :

$$
\begin{aligned}
0 & =F_{1}\left(\frac{\partial g}{\partial y}+\frac{\partial g}{\partial z} \frac{\partial z}{\partial y}\right)+F_{2}\left(\frac{\partial h}{\partial y}+\frac{\partial h}{\partial z} \frac{\partial z}{\partial y}\right) \\
& =F_{1} g_{2}+F_{2} h_{2}+\frac{\partial z}{\partial y}\left(F_{1} g_{3}+F_{2} h_{3}\right)
\end{aligned}
$$

Now solve for $\partial z / \partial y$:

$$
\frac{\partial z}{\partial y}=-\frac{F_{1} g_{2}+F_{2} h_{2}}{F_{1} g_{3}+F_{2} h_{3}}
$$

4. (10 points) Define a real-valued function $f(x, y)$ on the $x y$-plane by

$$
f(x, y)= \begin{cases}x^{2} \sin \left(\frac{1}{x y}\right) & \text { if } x \neq 0 \text { and } y \neq 0 \\ 0 & \text { if } x=0 \text { or } y=0\end{cases}
$$

Does $f(x, y)$ have any points of discontinuity? Explain your answer.

Solution: It is discontinuous at all points $(x, 0)$ where $x \neq 0$. It is continuous everywhere else.

At points where $x y \neq 0$, there are no problems: the function is defined and made up of familiar functions (sin, products, quotients) all of which are continuous wherever they are defined.

The points where $x y=0$ fall into two families: the y-axis (where $x=0$) and the x-axis (where $y=0$). As (x, y) approaches a point on the y-axis, that is as (x, y) approaches $\left(0, y_{0}\right)$, the factor x^{2} goes to zero, while the factor $\sin (1 / x y)$ lies between -1 and 1 . Thus the product of these factors goes to zero, and the function is continuous at points on the y-axis.

As (x, y) approaches a point $\left(x_{0}, 0\right)$ on the x-axis, the function $\sin (1 / x y)$ has no limit - it oscillates between -1 and $1-$ while x^{2} approaches x_{0}^{2}. As long as x_{0} is nonzero, the limit of the product doesn't exist: the function value oscillates between $-x_{0}^{2}$ and x_{0}^{2}, roughly speaking.

