Mathematics 326 Final Exam

Name: \qquad
December 11, 2008
Instructions: This is a closed book exam, no calculators allowed. You may use one sheet of handwritten notes. Please turn off all cell phones, pagers, etc.

1. (7 points) Given differentiable real-valued functions $F(x, y), g(s, t)$, and $h(s, t)$, let $G(s, t)=$ $F(g(s, t), h(s, t))$. Suppose that $g(0,1)=2$ and $h(0,1)=3$. Use differentials to write down the approximate value of $G(0,1)-G(1 / 100,99 / 100)$, expressing your answer in terms of partial derivatives of F, g, and h. Make sure to indicate where each partial derivative is to be evaluated.

Solution: The differential $d G$ is approximately equal to $G\left(x_{0}+d x, y_{0}+d y\right)-G\left(x_{0}, y_{0}\right)$, and is given by the formula

$$
-d G=-\left(\frac{\partial F}{\partial x} \frac{\partial g}{\partial s}+\frac{\partial F}{\partial y} \frac{\partial h}{\partial s}\right) d s-\left(\frac{\partial F}{\partial x} \frac{\partial g}{\partial t}+\frac{\partial F}{\partial y} \frac{\partial h}{\partial t}\right) d t .
$$

In our case, we want to compute $G(0,1)-G(1 / 100,99 / 100)$, so to reconcile it with the above form, we should use $-d G$ with $s=0, t=1, d s=1 / 100$, and $d t=-1 / 100$. (We could also use $d G$ with $d s=-1 / 100$ and $d t=1 / 100$.)
Each of the partials of F should be evaluated at $(x, y)=(2,3)$, and the partials of g and h should be evaluated at $(s, t)=(0,1)$. Thus the answer could be written as

$$
-\frac{1}{100}\left(\frac{\partial F}{\partial x}(2,3) \frac{\partial g}{\partial s}(0,1)+\frac{\partial F}{\partial y}(2,3) \frac{\partial h}{\partial s}(0,1)\right)+\frac{1}{100}\left(\frac{\partial F}{\partial x}(2,3) \frac{\partial g}{\partial t}(0,1)+\frac{\partial F}{\partial y}(2,3) \frac{\partial h}{\partial t}(0,1)\right) .
$$

2. (5 points) Is the set $A=\left\{(x, y): x^{2}=y^{2}\right\}$ a vector space? Justify your answer.

Solution: No. Geometrically, the set A consists of the lines $x=y$ and $x=-y$, and this is not a single line through the origin (or a plane through the origin, etc.). Algebraically, the points $(1,1)$ and $(1,-1)$ are in A, but their sum $(2,0)$ is not.
3. (7 points) Find the maximum and minimum of $4 x-3 y$ subject to the constraint $x^{2}+y^{2}=25$.

Solution: I'll use Lagrange multipliers, so let $u(x, y)=4 x-3 y+\lambda\left(x^{2}+y^{2}\right)$. Then I need to solve the three equations

$$
\frac{\partial u}{\partial x}=0, \quad \frac{\partial u}{\partial y}=0, \quad x^{2}+y^{2}=25
$$

That is,

$$
4+2 \lambda x=0, \quad-3+2 \lambda y=0, \quad x^{2}+y^{2}=25
$$

The first equation gives $\lambda=-2 / x$, and the second gives $y=3 /(2 \lambda)=-3 x / 4$. So the third equation turns into

$$
x^{2}+\frac{9}{16} x^{2}=25, \quad \text { or } \quad x^{2}=16
$$

Thus $x= \pm 4$ and so from $y=-3 x / 4$ I get two critical points: $(4,-3)$ and $(-4,3)$. Because we're working over closed and bounded set (the set of points on the constraint curve), the function has a max and min. Therefore one of these two points will be the max and one will be the min, so I plug them into the original function $f(x, y)=4 x-3 y$ to figure out which is which: $f(4,-3)=25$ and $f(-4,3)=-25$. Therefore the function has its maximum value of 25 at the point $(4,-3)$, and it has its minimum value of -25 at the point $(-4,3)$.
4. (a) (4 points) Given a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$, suppose that the partial derivatives $\partial f / \partial x$ and $\partial f / \partial y$ both exist at $(x, y)=(1,2)$. What further conditions guarantee that f is differentiable at $(1,2)$?

Solution: The function $\partial f / \partial x$ should be defined in neighborhood of $(1,2)$ and be continuous at $(1,2)$. (Or the same, but for $\partial f / \partial y$.)
(There are many correct answers here, because I did not ask for the weakest possible condition. For example, requiring $\partial f / \partial x$ to be continuous in a neighborhood of $(1,2)$ is correct, because it implies the previous condition.)
(b) (3 points extra credit) Give an example of a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ which is not differentiable at $(1,2)$ but whose partial derivatives $\partial f / \partial x$ and $\partial f / \partial y$ exist at $(1,2)$.

Solution: See the book (sections 6.4 and 7.1) for examples like this.
5. Let $\left(x_{0}, y_{0}, u_{0}\right)$ satisfy the equations

$$
f(x)+f(y)=F(u), \quad g(x)+g(y)=G(u)
$$

and assume that all of the functions here have continuous derivatives.
(a) (5 points) State a sufficient condition for being able to solve for x and y in terms of u in a neighborhood of $\left(x_{0}, y_{0}, u_{0}\right)$.

Solution: Rewrite the system of equations as

$$
H(x, y, u)=0, \quad K(x, y, u)=0
$$

by setting

$$
H(x, y, u)=f(x)+f(y)-F(u), \quad K(x, y, u)=g(x)+g(y)-G(u)
$$

Then by the implicit function theorem, the condition is that the Jacobian $\frac{\partial(H, K)}{\partial(x, y)}$ is nonzero:

$$
\operatorname{det}\left[\begin{array}{ll}
\frac{\partial H}{\partial x} & \frac{\partial H}{\partial y} \\
\frac{\partial K}{\partial x} & \frac{\partial K}{\partial y}
\end{array}\right] \neq 0 .
$$

In this case, we can write the partials of H and K in terms of the derivatives of the functions f and g : for example, $\partial H / \partial x=f^{\prime}(x)$. So at the point $\left(x_{0}, y_{0}, u_{0}\right)$, the condition becomes

$$
f^{\prime}\left(x_{0}\right) g^{\prime}\left(y_{0}\right)-f^{\prime}\left(y_{0}\right) g^{\prime}\left(x_{0}\right) \neq 0
$$

(b) (2 points) What is that sufficient condition in the case $f(x)=x^{2}, g(x)=x^{3}$?

Solution: (Note that if $f(x)=x^{2}$, then $f(y)=y^{2}$, and the same for g.)
We just compute the derivatives and plug into the above equation:

$$
\left(2 x_{0}\right)\left(3 y_{0}^{2}\right)-\left(3 x_{0}\right)^{2}\left(2 y_{0}\right) \neq 0
$$

or

$$
6 x_{0} y_{0}\left(y_{0}-x_{0}\right) \neq 0
$$

This translates into $x_{0} \neq 0, y_{0} \neq 0$, and $x_{0} \neq y_{0}$.
6. The function $T(x, y)=\left(\frac{4}{3} x+\frac{2}{3} y, \frac{1}{3} x-\frac{4}{3} y\right)$ is a linear transformation from \mathbf{R}^{2} to \mathbf{R}^{2}. (Don't prove this.)
(a) (3 points) Find the matrix for T with respect to the standard basis $\{(1,0),(0,1)\}$.

Solution: We apply T to each of the basis vectors and write the answers in terms of those basis vectors:

$$
\begin{aligned}
& T(1,0)=(4 / 3,1 / 3)=\frac{4}{3}(1,0)+\frac{1}{3}(0,1) \\
& T(0,1)=(2 / 3,-4 / 3)=\frac{2}{3}(1,0)+\left(-\frac{4}{3}\right)(0,1)
\end{aligned}
$$

The matrix then has the coefficients from the first equation in the first column and the coefficients from the second equation in the second column: the matrix is $\left[\begin{array}{cc}\frac{4}{3} & \frac{2}{3} \\ \frac{1}{3} & -\frac{4}{3}\end{array}\right]$.
(b) (3 points) The set $\{(1,1),(2,-1)\}$ forms a basis for \mathbf{R}^{2}. (Don't prove this.) Find the matrix for T with respect to this basis.

Solution: Same procedure as above:

$$
\begin{aligned}
T(1,1) & =(2,-1)=0(1,1)+1(2,-1) \\
T(2,-1) & =(2,2)=2(1,1)+0(2,-1)
\end{aligned}
$$

So the matrix is $\left[\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right]$.
(c) (4 points) Suppose that $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is a continuously differentiable function, and write $(u, v)=f(x, y)$. Suppose that the derivative of f at the point $(-2,-5)$ is the linear transformation T defined above. Is it possible to solve for x and y in terms of u and v in a neighborhood of $\left(x_{0}, y_{0}\right)=(-2,-5)$?

Solution: Yes: the linear transformation T is invertible (because, for example, each of the matrices above has nonzero determinant). Therefore by the inverse function theorem, f is invertible in a neighborhood of $(-2,-5)$.

