A chain rule problem

(An exercise taken from Vector Calculus by Marsden and Tromba.)
Define the real-valued function $f(x, y)$ by

$$
f(x, y)= \begin{cases}\frac{x y^{2}}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

Define the vector-valued function $\vec{g}(t)$ by $\vec{g}(t)=(2 t, t)$, and let $h(t)=(f \circ \vec{g})(t)$.
(a) Compute $h^{\prime}(t)$ directly from the definition of $h(t)$. In particular, what is $h^{\prime}(0)$?
(b) Use the chain rule to compute $h^{\prime}(0)$.
(c) What can you deduce from this?

