Homework #1

Problem. We know that $H^*(\mathbb{R}P^{\infty}; \mathbb{F}_2) \cong \mathbb{F}_2[x]$ with x in dimension 1. Use the Cartan formula and the instability conditions to compute $\operatorname{Sq}^i(x^j)$ for all i and j.

This is due on Friday, October 12.

1 Acyclic carriers

This is taken from Munkres [Mun84, Section 13].

Definition 1.1. Fix a ring R. Suppose that \mathscr{C} is a chain complex of R-modules, free with basis B. Let \mathscr{C}' be a chain complex of R-modules. An *acyclic carrier* from \mathscr{C} to \mathscr{C}' , relative to the basis B, is a function

$$\Phi: B \to \{\text{subcomplexes of } \mathscr{C}'\},\$$

such that

- $\Phi(\sigma)$ is acyclic for each $\sigma \in B$, and
- for basis elements σ and τ , if the coefficient of τ is nonzero in $\partial(\sigma)$, then $\Phi(\tau)$ is a subcomplex of $\Phi(\sigma)$.

A chain map $f: \mathscr{C} \to \mathscr{C}'$ is carried by Φ if $f(\sigma) \in \Phi(\sigma)$ for each $\sigma \in B$.

Theorem 1.2. Let \mathcal{C} and \mathcal{C}' be chain complexes over R with \mathcal{C} free. Let Φ be an acyclic carrier from \mathcal{C} to \mathcal{C}' . Then there is a chain map $f : \mathcal{C} \to \mathcal{C}'$ carried by Φ . Any two such are chain homotopic, and the chain homotopy is carried by Φ .

2 Equivariant acyclic carriers

From Mosher and Tangora [MT68, Chapter 2].

Definition 2.1. Let π be a group and let $\mathbf{Z}[\pi]$ denote the group ring of π . Let \mathscr{C} be a free chain complex of $\mathbf{Z}[\pi]$ -modules with basis B, and let \mathscr{C}' be a chain complex of $\mathbf{Z}[\pi]$ -modules. A π -equivariant acyclic carrier from \mathscr{C} to \mathscr{C}' is a function

$$\Phi: B \to \{ \text{subcomplexes of } \mathscr{C}' \},\$$

such that

- $\Phi(\sigma)$ is acyclic for each $\sigma \in B$,
- for basis elements σ and τ , if the coefficient of τ is nonzero in $\partial(\sigma)$, then $\Phi(\tau)$ is a subcomplex of $\Phi(\sigma)$, and

• for $x \in \pi$ and $\sigma \in B$, we have the containment $x \cdot \Phi(\sigma) \subseteq \Phi(\sigma)$.

A π -equivariant chain map $f : \mathscr{C} \to \mathscr{C}'$ is *carried* by Φ if $f(\sigma) \in \Phi(\sigma)$ for every $\sigma \in B$.

Theorem 2.2. Let π , \mathscr{C} , and \mathscr{C}' be as above, and let Φ be a π -equivariant acyclic carrier from \mathscr{C} to \mathscr{C}' . Then there is a π -equivariant chain map $f : \mathscr{C} \to \mathscr{C}'$ carried by Φ . Any two such are chain homotopic, and the chain homotopy is carried by Φ .

3 The Eilenberg-Zilber theorem

We also need the Eilenberg-Zilber theorem. If X is a topological space, write S(X) for its singular chain complex.

Theorem 3.1. For topological spaces X and Y, there are natural chain maps

 $\mathcal{S}(X) \otimes \mathcal{S}(Y) \rightleftharpoons \mathcal{S}(X \times Y)$

which are chain-homotopy inverse to each other.

References

- [MT68] R. E. Mosher and M. C. Tangora, Cohomology operations and applications in homotopy theory, Harper & Row, Publishers, New York-London, 1968.
- [Mun84] J. R. Munkres, *Elements of algebraic topology*, Addison-Wesley Publishing Company, Menlo Park, CA, 1984.