Mathematics 424B/574B

Autumn 2007

Study problems for the final

There will be some problems on the final which are based on some of these; there will also be some problems on the final which are not based on any of these.

1. Exercises 3.6, 3.12, 3.18
2. Let $\left\{a_{n}\right\}$ be a sequence of real numbers, let $\left\{p_{n}\right\}$ be a sequence of positive integers, and let

$$
c_{n}=\frac{p_{1} a_{1}+p_{2} a_{2}+\ldots+p_{n} a_{n}}{p_{1}+p_{2}+\ldots+p_{n}} .
$$

Prove that if the sequence $\left\{a_{n}\right\}$ converges to some number a, then $\left\{b_{n}\right\}$ converges to a also.
3. Let $\sum_{n=0}^{\infty} a_{n}$ be a series. For each n, let $s_{n}=a_{0}+\ldots+a_{n}$. Let $\left\{b_{n}\right\}$ be a sequence. Suppose that
(i) the sequence $\left\{s_{n} b_{n+1}\right\}$ converges, and
(ii) the series $\sum_{n=0}^{\infty} s_{n}\left(b_{n}-b_{n+1}\right)$ converges.

Prove that the series $\sum_{n=0}^{\infty} a_{n} b_{n}$ converges. (Theorem 3.41 might be helpful.) Use this to give another proof of Theorem 3.42, and also use it to solve exercise 3.8.

1. Exercise 4.4
2. Given a function $f: X \rightarrow Y$, prove that f is continuous if and only if $f(\bar{E}) \subseteq \overline{f(E)}$ for every subset E of X.
3. Suppose that $f: X \rightarrow Y$ is continuous. Prove that if X is compact, then $f(X)$ is compact. Prove that if X is connected, then $f(X)$ is connected. (Only assume the definition of compactness and the characterization of continuity in terms of preimages of open sets being open. Can you do it with just the $\varepsilon-\delta$ definition of continuity?)
4. Suppose that $f: X \rightarrow \mathbf{R}$ and $g: X \rightarrow \mathbf{R}$ are continuous. Define $h: X \rightarrow$ \mathbf{R} by $h(x)=\min (f(x), g(x))$. Must h be continuous?
5. Is there a continuous function $f:(0,1) \cup(1,2) \rightarrow \mathbf{R}$ with $f(1-)=0$ and $f(1+)=3$? Is there a uniformly continuous function like this?
