
Mathematics 424/574 Final Exam Name: Answers
December 12, 2007

Instructions: This is a closed book exam, no notes or calculators allowed. Justify all of your answers,
unless the problem says otherwise. Unless otherwise specified, you may refer to and use any result from the
book, homework, or in-class problems. This is a timed exam, so you may use abbreviations and symbols
(such as “∀”): as long as I can make sense of what you write without struggling too much, it’s okay.

Notation: R is the set of real numbers.

1. (10 points) Let{an} be a sequence of real numbers, let{pk} be a sequence of positive real numbers so
that the partial sums∑n

k=1 pk → ∞, and let

cn =
p1a1 + p2a2 + · · ·+ pnan

p1 + p2 + · · ·+ pn
.

Prove that if the sequence{an} converges to some numbera, then{cn} converges toa also.

Solution: Fix ε > 0, and considercn−a:

cn−a =
p1a1 + p2a2 + · · ·+ pnan

p1 + p2 + · · ·+ pn
−a

=
p1(a1−a)+ · · ·+ pn(an−a)

p1 + · · ·+ pn
.

There is an integerN so that ifn > N, then|an−a| < ε/2. There is also an integerM so that if
n > M, then ∣∣∣∣ p1(a1−a)+ · · ·+ pN(an−a)

p1 + · · ·+ pn

∣∣∣∣ < ε/2 :

the numerator here is fixed, and the denominator gets larger asn→ ∞, so the fraction can be made
arbitrarily close to zero. Therefore for anyn > max(N,M), we have

cn−a =
p1(a1−a)+ · · ·+ pn(an−a)

p1 + · · ·+ pn

=
p1(a1−a)+ · · ·+ pN(aN−a)+ pN+1(aN+1−a)+ . . . pn(an−a)

p1 + · · ·+ pn

=
p1(a1−a)+ · · ·+ pN(aN−a)

p1 + · · ·+ pn

=
p1(a1−a)+ · · ·+ pN(aN−a)+ pN+1(aN+1−a)+ . . . pn(an−a)

p1 + · · ·+ pn

=
p1(a1−a)+ · · ·+ pN(aN−a)

p1 + · · ·+ pn
+

pN+1(aN+1−a)+ · · ·+ pn(an−a)
p1 + · · ·+ pn

.

Now take absolute values: the first fraction is less thanε/2 sincen > M. For the second fraction,
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we have ∣∣∣∣ pN+1(aN+1−a)+ · · ·+ pn(an−a)
p1 + · · ·+ pn

∣∣∣∣≤ pN+1|aN+1−a|+ · · ·+ pn|an−a|
p1 + · · ·+ pn

<
pN+1ε/2+ · · ·+ pnε/2

p1 + · · ·+ pn

<
p1ε/2+ · · ·+ pnε/2

p1 + · · ·+ pn
= ε/2.

Therefore forn> max(M,N), we have|cn−a|< ε. Sinceε was arbitrary, we conclude thatcn→ a.

2. Investigate the behavior (convergence or divergence) of∑an if

(a) (5 points)an = n
n3+1

Solution: We rewritean as 1
n2+ 1

n
. Sincen2 + 1

n > n2, we have 1
n2+ 1

n
< 1

n2 . Everything here is

positive, so we have|an| < 1
n2 . The series∑ 1

n2 converges, so by the comparison test, so does
∑an.

(b) (5 points) an =


(−1)n/2

23n+4 if n is even,

1
32n if n is odd.

Solution: There are various ways to do this.

For example, we can use the root test. We have

n
√
|an| →

{
1
8 if n is even,
1
9 if n is odd.

(For the case whenn is even, the sign is of course irrelevant. Thenth root of the denominator
23n+4 = 23n24 is

n
√

23n n
√

24 = 23 n
√

24.

As n goes to infinity, n
√

24 = 24/n goes to 1, so the limit is 8.)

Therefore limsup
n→∞

n
√
|an| ≤

1
8

, so the root test tells us that∑an converges.

Alternatively, we can break this into two sums, the even terms and the odd terms. If we can
show that each of these converges, then the whole thing will. Each of these is a geometric
series with ratio less than one, so they converge.
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3. Let f : X →Y be a function between metric spaces.

(a) (5 points) Prove thatf is continuous if and only iff−1(U) is open for every open subsetU of Y.
(Use only the definition of continuity to do this – don’t just cite theorems from the book.)

Solution: First suppose thatf is continuous, and suppose thatU is open inY. Fix x∈ f−1(U);
we want to show thatx is an interior point of f−1(U). Sincex ∈ f−1(U), we know that
f (x) ∈U . SinceU is open, there is anε > 0 so thatNε( f (x)) ⊆U . Furthermore, sincef is
continuous atx, given thisε, there exists aδ > 0 so that ifdX(x,y)< δ , thendY( f (x), f (y))< ε.
That is, if dX(x,y) < δ , then f (y) ∈ Nε( f (x)) ⊆U , which means thaty∈ f−1(U). Therefore
theδ -neighborhood ofx is contained inf−1(U), sox is an interior point, andf−1(U) is open.

Now suppose that the preimage of every open set is open; choose a pointx∈ X, and fixε > 0.
ThenNε( f (x)) is open inY, so its preimage is open inX. Sincex is in this preimage, it must
be an interior point, so there is aδ > 0 with Nδ (x) ⊆ f−1(Nε( f (x))). But this means that for
everyy ∈ X with dX(x,y) < δ , we havef (y) ∈ Nε( f (x)), so dY( f (x), f (y)) < ε. Therefore
f is continuous atx. Sincex was an arbitrary point ofX, we conclude thatf is continuous
everywhere.

(b) (5 points) Prove thatf is continuous if and only iff−1(V) is closed for every closed subsetV of
Y. (Use only the definition of continuity and the result from part (a).)

Solution: First suppose thatf is continuous. Suppose thatV is closed inY. Then its comple-
mentVc is open inY, and f−1(Vc) = ( f−1(V))c. By part (a), f−1(Vc) is open, and therefore
its complementf−1(V) is closed.

Now suppose that the preimage of any closed set is closed. We will show that the preimage of
any open set is open, so suppose thatU is an open subset ofY. ThenUc is closed, and again
f−1(Uc) = ( f−1(U))c; by assumption,f−1(Uc) is closed, so its complementf−1(U) is open.
Thereforef is continuous.

(Problem 3, continued)

(c) (5 points) Suppose thatf is continuous. Prove that ifX is connected, thenf (X) is connected. (Use
only the definition of connectedness, the definition of continuity, and the results from parts (a) and
(b).)

Solution: Suppose that there is a separation off (X): suppose thatf (X) = A∪B with A∩B=
/0 = A∩B, with A andB nonempty. Thenf−1(A) and f−1(B) are both nonempty,f−1(A)∩
f−1(B) = f−1(A∩B) and hence is empty, and similarly forf−1(A)∩ f−1(B). Also, f−1(A)∪
f−1(B) = f−1(A∪B) = X. Finally, f−1(A) is closed and containsf−1(A), and hence contains
f−1(A). Taken together, this means thatf−1(A) and f−1(B) form a separation ofX.

This proves the contrapositive: iff (X) is not connected, thenX is not connected.
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4. (a) (5 points) Is there a continuous functionf : (0,1)∪ (1,2)→ R with f (1−) < f (1+)?

Solution: Yes: the functionf defined by

f (x) =

{
0 if 0 < x < 1,

2 if 1 < x < 2

is continuous: given anyx in the domain and anyε > 0, chooseδ so thatδ < |x−1|. Then if
|y−x|< δ , thenx andy are both in the same “piece” of the domain: ifx< 1, theny< 1, while
if x > 1, theny > 1. Thereforef (x) = f (y), so| f (y)− f (x)|= 0 is less thanε.

(b) (5 points) Is there a uniformly continuous functionf : (0,1)∪ (1,2)→ R with f (1−) < f (1+)?

Solution: No: pick ε with f (1+)− f (1−) > 3ε > 0. Then there is no choice ofδ which
makes the function satisfy the definition of uniform continuity: for anyδ > 0, there is anx with
1− δ

2 < x < 1 and| f (x)− f (1−)|< ε – this is because the limitf (1−) exists – and similarly
there is ay with 1 < y < 1+ δ

2 and| f (y)− f (1+)|< ε. Therefore we havef (x) < f (1−)+ ε

and f (y) > f (1+)− ε, so the distance between the pointsx andy is less thanδ , while

| f (y)− f (x)|= f (y)− f (x)< ( f (1+)−ε)−( f (1−)+ε)= ( f (1+)− f (1−))−2ε < 3ε−2ε = ε.

Thus f cannot be uniformly continuous.

5. LetX be a metric space, and suppose thatf : X → R is continuous.

(a) (5 points) Assume thatX is compact, and prove that there exist pointsp andq in X such that
f (p)≤ f (x)≤ f (q) for all x∈ X.

Solution: This is just the extreme value theorem.

SinceX is compact andf is continuous, the imagef (X) is compact inR, and hence is closed
and bounded. Sincef (X) is bounded, it has a sup and an inf. Since it is closed, it contains its
sup and inf; therefore there are pointsp,q∈ X so that f (p) = inf f (X) and f (q) = supf (X).
This is precisely what was to be proved.

(b) (5 points) Show that ifX is not compact, then the conclusion in part (a) need not hold.

Solution: Let X = R, and let f : R → R be the function defined byf (x) = x. Then f is
continuous (the identity function is always continuous), and sinceR is not bounded, there are
no pointsp,q∈ R so thatp≤ x≤ q for all x∈ R.


