2.12. Let K be the following subset of \mathbf{R} :

$$K = \{0\} \cup \left\{\frac{1}{n} : n = 1, 2, 3, \ldots\right\}.$$

Prove that K is compact directly from the definition.

Let $\{G_{\alpha}\}$ be an open cover of K. I have to show that there is a finite subcover. Since this is an open cover, $K \subseteq \bigcup_{\alpha} G_{\alpha}$, so in particular, the point 0 is in one of the sets in the cover, say G_{α_0} . Since G_{α_0} is open, every point in it is an interior point, and in particular, 0 is an interior point. So G_{α_0} contains a neighborhood of the form $N_{\epsilon}(0)$ for some $\epsilon > 0$. Since $\epsilon > 0$, there is an n so that $\epsilon > 1/n$ (by the archimedean property of **R**, Theorem 1.20(a), with $x = \epsilon$ and y = 1). Therefore the neighborhood contains all points x on the real line with $|x| \leq 1/n$, so the points

$$\frac{1}{n}, \ \frac{1}{n+1}, \ \frac{1}{n+2}, \ \dots$$

are all contained in $N_{\epsilon}(0) \subseteq G_{\alpha_0}$.

Now I'm ready to exhibit a finite subcover of $\{G_{\alpha}\}$. For each number $i = 1, 2, \ldots, n-1$, find an open set G_{α_i} from the cover which contains 1/i. Then K is contained in

$$G_{\alpha_0} \cup G_{\alpha_1} \cup G_{\alpha_2} \cup \cdots \cup G_{\alpha_{n-1}}$$

Why? For i = 1, ..., n - 1, the point 1/i is in G_{α_i} . The rest of the points in K are in G_{α_0} . Therefore

$$\{G_{\alpha_0}, G_{\alpha_1}, \ldots, G_{\alpha_{n-1}}\}$$

is a finite subcover. I have showed that every open cover of K contains a finite subcover, and therefore K is compact.