2.12. Let K be the following subset of \mathbf{R} :

$$
K=\{0\} \cup\left\{\frac{1}{n}: n=1,2,3, \ldots\right\}
$$

Prove that K is compact directly from the definition.
Let $\left\{G_{\alpha}\right\}$ be an open cover of K. I have to show that there is a finite subcover. Since this is an open cover, $K \subseteq \bigcup_{\alpha} G_{\alpha}$, so in particular, the point 0 is in one of the sets in the cover, say $G_{\alpha_{0}}$. Since $G_{\alpha_{0}}$ is open, every point in it is an interior point, and in particular, 0 is an interior point. So $G_{\alpha_{0}}$ contains a neighborhood of the form $N_{\epsilon}(0)$ for some $\epsilon>0$. Since $\epsilon>0$, there is an n so that $\epsilon>1 / n$ (by the archimedean property of \mathbf{R}, Theorem 1.20 (a), with $x=\epsilon$ and $y=1$). Therefore the neighborhood contains all points x on the real line with $|x| \leq 1 / n$, so the points

$$
\frac{1}{n}, \frac{1}{n+1}, \frac{1}{n+2}, \ldots
$$

are all contained in $N_{\epsilon}(0) \subseteq G_{\alpha_{0}}$.
Now I'm ready to exhibit a finite subcover of $\left\{G_{\alpha}\right\}$. For each number $i=1$, $2, \ldots, n-1$, find an open set $G_{\alpha_{i}}$ from the cover which contains $1 / i$. Then K is contained in

$$
G_{\alpha_{0}} \cup G_{\alpha_{1}} \cup G_{\alpha_{2}} \cup \cdots \cup G_{\alpha_{n-1}} .
$$

Why? For $i=1, \ldots, n-1$, the point $1 / i$ is in $G_{\alpha_{i}}$. The rest of the points in K are in $G_{\alpha_{0}}$. Therefore

$$
\left\{G_{\alpha_{0}}, G_{\alpha_{1}}, \ldots, G_{\alpha_{n-1}}\right\}
$$

is a finite subcover. I have showed that every open cover of K contains a finite subcover, and therefore K is compact.

