Suppose that $\{a_n\}_{n\geq 0}$ is a sequence of positive real numbers which decrease monotonically and which converge to zero. Then by Theorem 3.43, the alternating series

$$\sum_{n=0}^{\infty} (-1)^n a_n$$

converges.

(a) With $\{a_n\}$ as above, suppose that $\sum_{n=0}^{\infty} (-1)^n a_n = L$. For any integer $k \ge 0$, let $s_k = \sum_{n=0}^k (-1)^n a_n$ be the *k*th partial sum. Show that $|L - s_k| \le a_{k+1}$.

(b) The alternating series
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$$
 converges to $1/e$. According to part (a) how close is the partial sum $\sum_{n=0}^{6} (-1)^n/n!$ to $1/e$?

(You might want to compare with what a calculator gives you for the actual difference $|1/e - \sum_{n=0}^{6} (-1)^n/n!|$.)