Suppose that $\left\{a_{n}\right\}_{n \geq 0}$ is a sequence of positive real numbers which decrease monotonically and which converge to zero. Then by Theorem 3.43, the alternating series

$$
\sum_{n=0}^{\infty}(-1)^{n} a_{n}
$$

converges.
(a) With $\left\{a_{n}\right\}$ as above, suppose that $\sum_{n=0}^{\infty}(-1)^{n} a_{n}=L$. For any integer $k \geq 0$, let $s_{k}=\sum_{n=0}^{k}(-1)^{n} a_{n}$ be the k th partial sum. Show that

$$
\left|L-s_{k}\right| \leq a_{k+1}
$$

(b) The alternating series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}$ converges to $1 / e$. According to part (a), how close is the partial sum $\sum_{n=0}^{6}(-1)^{n} / n!$ to $1 / e$?
(You might want to compare with what a calculator gives you for the actual difference $\left|1 / e-\sum_{n=0}^{6}(-1)^{n} / n!\right|$.)

