Name: \qquad
Instructions: This is a closed book quiz, no notes or calculators allowed. Please check your answers carefully; I will only award limited partial credit.

1. (5 points) Multiple choice: answer (a), (b), or (c), and explain your answer. Which of the following equals $\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|$?
(a) $(y-x)(z-x)(z-y)$
(b) $(y-x)(x-z)(z-y)$
(c) neither of these

Solution: Subtract the first row from the second and third; this does not change the determinant, so it equals

$$
\left|\begin{array}{ccc}
1 & x & x^{2} \\
0 & y-x & y^{2}-x^{2} \\
0 & z-x & z^{2}-x^{2}
\end{array}\right|
$$

Now expand along the first column and do some algebra: the determinant equals

$$
\begin{aligned}
1 \cdot\left((y-x)\left(z^{2}-x^{2}\right)-\left(y^{2}-x^{2}\right)(z-x)\right) & =(y-x)(z-x)(z+x)-(y-x)(y+x)(z-x) \\
& =(y-x)(z-x)((z+x)-(y+x)) \\
& =(y-x)(z-x)(z-y),
\end{aligned}
$$

so (a) is the correct answer.
2. (5 points) Find all ordered pairs (x, y) for which the matrix $\left[\begin{array}{lll}x & 1 & y \\ 1 & 2 & 3 \\ 0 & 1 & 1\end{array}\right]$ is singular.

Solution: Compute the determinant, say by expanding along the first column: the determinant equals $y-x-1$. This matrix is singular when its determinant is zero, so the answer is

$$
\{(x, y): y=x+1\} .
$$

