Name: \qquad
Instructions: This is a closed book quiz, no notes or calculators allowed. Please check your answers carefully; I will only award limited partial credit.

1. (6 points) The following pairs of vectors each form a basis of a subspace of either \mathbf{R}^{2} or \mathbf{R}^{3}. Fill in the table by entering "yes" or "no" in each box.

	orthogonal?	orthonormal?
$\left\{\left[\begin{array}{c}1 / \sqrt{2} \\ 0 \\ 1 / \sqrt{2}\end{array}\right],\left[\begin{array}{c}-1 / 2 \\ -1 / \sqrt{2} \\ 1 / 2\end{array}\right]\right\}$	yes	yes
$\left\{\left[\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right],\left[\begin{array}{c} 4 \\ 5 \\ -6 \end{array}\right]\right\}$	no	no
$\left\{\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{c}-1 \\ 3\end{array}\right]\right\}$	no	no

2. (4 points) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be a linear transformation. Suppose that $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}3 \\ 0\end{array}\right]$ and $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=$ $\left[\begin{array}{l}1 \\ 2\end{array}\right]$. What is $T\left(\left[\begin{array}{c}1 \\ -2\end{array}\right]\right)$?

Solution: There are at least two approaches. One way is: since

$$
\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]-2\left[\begin{array}{l}
0 \\
1
\end{array}\right],
$$

then

$$
\begin{aligned}
T\left(\left[\begin{array}{c}
1 \\
-2
\end{array}\right]\right) & =T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)-2 T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
& =\left[\begin{array}{l}
3 \\
0
\end{array}\right]-2\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& =\left[\begin{array}{c}
1 \\
-4
\end{array}\right] .
\end{aligned}
$$

Another way is: since we know what T is when applied to the standard basis, then we can form the matrix for T by putting those vectors in the columns: $T(\mathbf{v})=A \mathbf{v}$ where

$$
A=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]
$$

Now just do the matrix multiplication:

$$
T\left(\left[\begin{array}{c}
1 \\
-2
\end{array}\right]\right)=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
1 \\
-4
\end{array}\right]
$$

