Name: \qquad
Instructions: This is a closed book quiz, no notes or calculators allowed. Please check your answers carefully; I will only award limited partial credit.

1. (5 points) Suppose that W is the following subspace of \mathbf{R}^{4} :

$$
W=\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]: x_{1}-3 x_{3}+x_{4}=0, x_{2}+x_{3}-6 x_{4}=0\right\}
$$

Determine $\operatorname{dim} W$.

Solution: The answer is 2 . Every vector in W can be written in the form

$$
\left[\begin{array}{c}
3 x_{3}-x_{4} \\
-x_{3}+6 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
3 x_{3} \\
-x_{3} \\
x_{3} \\
0
\end{array}\right]+\left[\begin{array}{c}
-x_{4} \\
6 x_{4} \\
0 \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
3 \\
-1 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
-1 \\
6 \\
0 \\
1
\end{array}\right] .
$$

Thus W is spanned by the vectors $\left[\begin{array}{c}3 \\ -1 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 6 \\ 0 \\ 1\end{array}\right]$. These two vectors are also linearly independent, so they form a basis. Since W has a basis with two vectors in it, W is 2-dimensional.
2. (5 points) Let $A=\left[\begin{array}{cccc}1 & 2 & 0 & 5 \\ 1 & 3 & 1 & 6 \\ 2 & 3 & -1 & 9\end{array}\right]$. It turns out that a basis for the range of A is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]\right\}$.
(a) What is the rank of A ?

Solution: The rank is 2 : the rank is the dimension of the range, and you compute the dimension by counting the number of vectors in a basis. Since we have a basis, we can get the rank immediately.
(b) What is the nullity of A ?

Solution: A is a 3×4 matrix, so rank + nullity $=4$. Since the rank is 2 , the nullity must also be 2 .

