Name: \qquad
Instructions: This is a closed book quiz, no notes or calculators allowed. Please check your answers carefully; I will only award limited partial credit.

1. (6 points) For each part, give a brief geometric description of the given subset of \mathbf{R}^{2}, and say whether it is a subspace or not.
(a) $\left\{(x, y): x^{2}+y^{2}=1\right\}$

Solution: This represents a unit circle centered at the origin. This is not a subspace: from the geometric point of view, it is not a line or plane through the origin. It also fails all of the parts of the definition of a subspace that I gave in class: it does not contain the origin, it is not closed under vector addition, and it is not closed under scalar multiplication.
(b) $\{(x, y):-3 x+y=2\}$

Solution: This is a line with y-intercept 2 and slope 3 . So it does not pass through the origin, and it is not a subspace. It also fails all of the parts of the definition of a subspace that I gave in class: it does not contain the origin, it is not closed under vector addition, and it is not closed under scalar multiplication.
2. (4 points) Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2\end{array}\right]$.

Do either part (a) or part (b). DO NOT DO BOTH. Clearly indicate which one you're doing. For either part, don't just state an answer: explain what you're doing.
(a) Give an algebraic specification for the null space of A.

Solution: Let $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, set $A \mathbf{x}$ equal to zero, and solve for \mathbf{x} :

$$
A \mathbf{x}=\left[\begin{array}{c}
x_{1}+2 x_{2}+3 x_{3} \\
x_{2}+2 x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Now solve this system of equations for \mathbf{x}. We can row reduce, or we can just plug and chug. For example, the second equation says that $x_{2}=-2 x_{3}$, and plugging this into the first equation gives $x_{1}-4 x_{3}+3 x_{3}=0$, so $x_{1}=x_{3}$. So the null space is

$$
\left\{\mathbf{x} \text { in } \mathbf{R}^{3}: x_{1}=x_{3}, x_{2}=-2 x_{3}\right\} .
$$

Another description: all scalar multiples of the vector $(1,-2,1)$:

$$
\{(1,-2,1) t \text { for all } t\} \text {. }
$$

(b) Give an algebraic specification for the range of A.

Solution: The question is, for which vectors $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$ is there a solution to the equation $A \mathbf{x}=\mathbf{b}$? So row reduce the augmented matrix

$$
\left[\begin{array}{llll}
1 & 2 & 3 & b_{1} \\
0 & 1 & 2 & b_{2}
\end{array}\right] .
$$

This takes one step: its reduced row-echelon form is

$$
\left[\begin{array}{cccc}
1 & 0 & -1 & b_{1}-2 b_{2} \\
0 & 1 & 2 & b_{2}
\end{array}\right] .
$$

So the solution is: $x_{1}-x_{3}=b_{1}-2 b_{2}$ and $x_{2}+2 x_{3}=b_{2}$. This can be solved for any b_{1} and b_{2}, so the range is all of \mathbf{R}^{2}.
Alternatively, the range of A is equal to the column space of A, which equals the row space of A^{T}. To get a simpler description of this, row reduce A^{T} :

$$
\left[\begin{array}{ll}
1 & 0 \\
2 & 1 \\
3 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

So the row space of A^{T} equals the span of $(1,0)$ and $(0,1)$, which is all of \mathbf{R}^{2}.

