Name: Answers

Instructions: This is a closed book quiz, no notes or calculators allowed. Please check your answers carefully; I will only award limited partial credit.

- 1. (6 points) For each part, give a brief geometric description of the given subset of \mathbf{R}^2 , and say whether it is a subspace or not.
 - (a) $\{(x,y): x^2 + y^2 = 1\}$

Solution: This represents a unit circle centered at the origin. This is **not a subspace**: from the geometric point of view, it is not a line or plane through the origin. It also fails *all* of the parts of the definition of a subspace that I gave in class: it does not contain the origin, it is not closed under vector addition, and it is not closed under scalar multiplication.

(b) $\{(x,y): -3x+y=2\}$

Solution: This is a line with *y*-intercept 2 and slope 3. So it does not pass through the origin, and it is **not a subspace**. It also fails all of the parts of the definition of a subspace that I gave in class: it does not contain the origin, it is not closed under vector addition, and it is not closed under scalar multiplication.

2. (4 points) Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \end{bmatrix}$.

Do either part (a) or part (b). DO NOT DO BOTH. Clearly indicate which one you're doing. For either part, don't just state an answer: explain what you're doing.

(a) Give an algebraic specification for the null space of *A*.

Solution: Let $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, set $A\mathbf{x}$ equal to zero, and solve for \mathbf{x} : $A\mathbf{x} = \begin{bmatrix} x_1 + 2x_2 + 3x_3 \\ x_2 + 2x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$

Now solve this system of equations for **x**. We can row reduce, or we can just plug and chug. For example, the second equation says that $x_2 = -2x_3$, and plugging this into the first equation gives $x_1 - 4x_3 + 3x_3 = 0$, so $x_1 = x_3$. So the null space is

{**x** in **R**³ :
$$x_1 = x_3$$
, $x_2 = -2x_3$ }.

Another description: all scalar multiples of the vector (1, -2, 1):

 $\{(1, -2, 1)t \text{ for all } t\}.$

(b) Give an algebraic specification for the range of *A*.

Solution: The question is, for which vectors $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ is there a solution to the equation $A\mathbf{x} = \mathbf{b}$? So row reduce the augmented matrix

$$\begin{bmatrix} 1 & 2 & 3 & b_1 \\ 0 & 1 & 2 & b_2 \end{bmatrix}.$$

This takes one step: its reduced row-echelon form is

[1	0	-1	$b_1 - 2b_2$
0	1	2	b_2

So the solution is: $x_1 - x_3 = b_1 - 2b_2$ and $x_2 + 2x_3 = b_2$. This can be solved for any b_1 and b_2 , so the range is all of \mathbb{R}^2 .

Alternatively, the range of A is equal to the column space of A, which equals the row space of A^{T} . To get a simpler description of this, row reduce A^{T} :

[1	0		[1	0		[1	0
2	1	\rightarrow	0	1	\rightarrow	0	1
3	2		0	2		0	0

So the row space of A^T equals the span of (1,0) and (0,1), which is all of \mathbb{R}^2 .