Name: \qquad
Instructions: This is a closed book quiz, no notes or calculators allowed. Please check your answers carefully; I will only award limited partial credit.

1. (2 points) Just answer "yes" or "no"; you do not need to explain why your answer is correct.
(a) Is the equation $|x|+4 y^{2}=12$ linear?

Solution: No. Absolute value signs and squares of variables are not allowed in linear equations.
(b) Is the equation $e^{3} x-\sqrt{\pi} y=\ln (\sqrt[5]{98})$ linear?

Solution: Yes. This is of the form (constant $) x+($ constant $) y=($ constant $)$, which is a linear equation.
2. (3 points) What is the augmented matrix for the following system?

$$
\begin{array}{r}
x_{1}-x_{2}+x_{3}=1 \\
2 x_{1}-2 x_{2}+3 x_{3}=3
\end{array}
$$

Solution:

$$
\left[\begin{array}{llll}
1 & -1 & 1 & 1 \\
2 & -2 & 3 & 3
\end{array}\right]
$$

3. (5 points) Transform the augmented matrix from problem 2 to reduced echelon form, and use the result to solve the original system. Use the back of the page if you run out of room.

Solution: Replace R_{2} (row 2) by $R_{2}-2 R_{1}$, to make the first entry zero:

$$
\left[\begin{array}{llll}
1 & -1 & 1 & 1 \\
2 & -2 & 3 & 3
\end{array}\right] \xrightarrow{R_{2}-2 R_{1}}\left[\begin{array}{cccc}
1 & -1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Then replace R_{1} by $R_{1}-R_{2}$:

$$
\xrightarrow{R_{1}-R_{2}}\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Now translate this back to equations:

$$
\begin{aligned}
x_{1}-x_{2} & =0 \\
x_{3} & =1
\end{aligned}
$$

So the solution is: $x_{1}=x_{2}$ and $x_{3}=1$. (x_{2} is an independent variable.)

