Name: \qquad
Instructions: This is a closed book exam, no calculators allowed. You may use one two-sided sheet of handwritten notes. Please check your answers carefully; I will only award limited partial credit. If you need more room, use the backs of the pages, and indicate that you have done so.

1. (20 points) Let A be the following 4×4 matrix:

$$
A=\left[\begin{array}{cccc}
1 & 4 & 4 & 2 \\
0 & 2 & 5 & -10 \\
1 & 4 & 8 & -6 \\
0 & -3 & -1 & 2
\end{array}\right]
$$

Find an orthonormal basis for the range of A.

Solution: The method is: first find a spanning set for the range of A, then find a basis, then use Gram-Schmidt to turn it into an orthogonal basis, and then normalize each vector to get an orthonormal basis.
The range of A is spanned by the columns of A, so they form a spanning set. To get a basis, we take the transpose of A, row reduce, transpose again, and keep the nonzero columns (equivalently, transpose, row reduce, and keep the nonzero rows):

$$
\begin{aligned}
A^{A^{t}} & =\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
4 & 2 & 4 & -3 \\
4 & 5 & 8 & -1 \\
2 & -10 & -6 & 2
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 2 & 0 & -3 \\
0 & 5 & 4 & -1 \\
0 & -10 & -8 & 2
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & -3 / 2 \\
0 & 0 & 4 & 13 / 2 \\
0 & 0 & -8 & -13
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & -3 / 2 \\
0 & 0 & 1 & 13 / 8 \\
0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

This isn't quite in reduced echelon form, because of the entry above the 1 in the third row, but changing that won't change which rows are nonzero, and as it stands now, the first two rows are already orthogonal. So a basis for the range is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -3 / 2\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 1 \\ 13 / 8\end{array}\right]\right\}$ We appply the GramSchmidt procedure to this. As I mentioned earlier, the first two are already orthogonal, so call them \mathbf{u}_{1} and \mathbf{u}_{2}. Nowi just have to replace the third (which I'll call \mathbf{w}_{3}) with

$$
\begin{aligned}
\mathbf{w}_{3}-\frac{\mathbf{u}_{1} \cdot \mathbf{w}_{3}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}-\frac{\mathbf{u}_{2} \cdot \mathbf{w}_{3}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2} & =\left[\begin{array}{c}
0 \\
0 \\
1 \\
13 / 8
\end{array}\right]-1 / 2\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]+3 / 4\left[\begin{array}{c}
0 \\
1 \\
0 \\
-3 / 2
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 / 2 \\
3 / 4 \\
1 / 2 \\
1 / 2
\end{array}\right] .
\end{aligned}
$$

So an orthogonal basis for the range is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 0 \\ -3 / 2\end{array}\right],\left[\begin{array}{c}-1 / 2 \\ 3 / 4 \\ 1 / 2 \\ 1 / 2\end{array}\right]\right\}$. Finally, to make this orthonormal, just divide each vector by its length: an orthonormal basis for the range is

$$
\left\{1 / \sqrt{2}\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right], 2 / \sqrt{13}\left[\begin{array}{c}
0 \\
1 \\
0 \\
-3 / 2
\end{array}\right], 4 / \sqrt{21}\left[\begin{array}{c}
-1 / 2 \\
3 / 4 \\
1 / 2 \\
1 / 2
\end{array}\right]\right\}
$$

(There are actually infinitely many correct answers.)
Another approach: you can actually do Gram-Schmidt with a spanning set, rather than a basis. So apply the Gram-Schmidt process to the columns of the matrix. One of the outputs is the zero vector, so discard that and keep the other three; this will be an orthogonal basis. Then divide by the lengths to get an orthonormal basis.
2. Short answer questions. Give a (brief) justification for each answer.
(a) (5 points) Consider the subspace $W=\left\{\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]: x_{1}+2 x_{2}-x_{3}=0, x_{2}+3 x_{3}=0\right\}$. What is the dimension of W ? (You don't need to explain why this is a subspace.)

Solution: Its dimension is 1. A brief reason for this is that the vectors in W depend on just one parameter, x_{3}. In more detail, each vector in W is of the form $\left[\begin{array}{c}7 x_{3} \\ -3 x_{3} \\ x_{3}\end{array}\right]$, so W is spanned by $\left[\begin{array}{c}7 \\ -3 \\ 1\end{array}\right]$. This single vector forms a basis for W, so W is 1-dimensional.
(b) (5 points) Define a function $F: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ by $F\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1} \\ 2 \\ x_{2}\end{array}\right]$. Is F a linear transformation?

Solution: No, it is not. For example, $F\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ and $F\left(\left[\begin{array}{l}2 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]$, so $F\left(\left[\begin{array}{l}2 \\ 0\end{array}\right]\right) \neq$ $2 F\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$.
(c) (5 points) Suppose that A is a 4×3 matrix, and suppose that $\left\{\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right],\left[\begin{array}{c}0 \\ -4 \\ 1\end{array}\right]\right\}$ is a basis for the null space of A. What is the rank of A ?

Solution: Its rank is 1 . The rank-nullity theorem says that rank+nullity=number of columns. This matrix has 3 columns, and its null space is 2-dimensional, so its nullity is 2 .
3. (5 points) For which values of a, b, and c is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{l}a \\ 2 \\ 2\end{array}\right],\left[\begin{array}{l}b \\ c \\ 1\end{array}\right]\right\}$ an orthogonal set?

Solution: In order for the first two to be orthogonal, their dot product must be zero: $a+6=0$. Therefore $a=-6$. In order for the first and third to be orthogonal, we must have $b+3=0$, so $b=-3$. The dot product of the second and third is $=0 a b+2 c+2=18+2 c+2=20+2 c$. Therefore $c=-10$.
4. (10 points) Let $A=\left[\begin{array}{ll}3 & -1 \\ 9 & -3\end{array}\right]$. Is it true that every vector in the range of A is also in the null space of A ? Explain your answer.

Solution: Method: get a description of the range, and then test to see if the vectors in the range are also in the null space.
The range of A is the column space, so the range is $\operatorname{Span}\left(\left[\begin{array}{l}3 \\ 9\end{array}\right],\left[\begin{array}{l}-1 \\ -3\end{array}\right]\right)$. These two vectors are scalar multiples of each other, so I can say that the range is Span $\left(\left[\begin{array}{l}-1 \\ -3\end{array}\right]\right)$. Therefore the vectors in the range are all of the form $\left[\begin{array}{c}-a \\ -3 a\end{array}\right]$. Are such vectors in the null space? Multiply by A :

$$
\left[\begin{array}{ll}
3 & -1 \\
9 & -3
\end{array}\right]\left[\begin{array}{c}
-a \\
-3 a
\end{array}\right]=\left[\begin{array}{c}
-3 a+3 a \\
-9 a+9 a
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

So, yes, every vector in the range is in the null space.
Alternatively, the clever and devious way to do the problem is to notice that $A^{2}=0$, and that this implies that the range is contained in the null space.

