Name: \qquad
Instructions: This is a closed book exam, no notes or calculators allowed. Please check your answers carefully; I will only award limited partial credit. If you need more room, use the backs of the pages, and indicate that you have done so.

1. Let

$$
A=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
-1 & 0 & 0 \\
3 & 2 & 1
\end{array}\right]
$$

(a) (10 points) Is A invertible? If so, find its inverse.

Solution: Form the augmented matrix

$$
\left[\begin{array}{cccccc}
-2 & 1 & 0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0 & 0 & 1
\end{array}\right]
$$

and row-reduce it. The result is

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & 1 & -2 & 0 \\
0 & 0 & 1 & -2 & 7 & 1
\end{array}\right] .
$$

Since the left half of this is the identity matrix, A is invertible, and its inverse is the right half:

$$
A^{-1}=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & -2 & 0 \\
-2 & 7 & 1
\end{array}\right]
$$

(Now check it: multiply A by this matrix and see if you get the 3×3 identity matrix.)
(b) (5 points) Is A singular? Is A nonsingular?

Solution: A is nonsingular (because it's invertible). It is not singular.
2. Let

$$
v_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
a \\
3 \\
5
\end{array}\right] .
$$

(a) (10 points) For which values of a is $\left\{v_{1}, v_{2}, v_{3}\right\}$ linearly independent?

Solution: I'll do this like Example 2 on page 73 of the book: Make a matrix with these vectors as the columns, add in a column of zeroes, and try to row-reduce the result:

$$
\left[\begin{array}{cccc}
1 & 0 & a & 0 \\
2 & 0 & 3 & 0 \\
3 & 1 & 5 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & a & 0 \\
0 & 0 & 3-2 a & 0 \\
0 & 1 & 5-3 a & 0
\end{array}\right]
$$

If $3=2 a$, which is to say if $a=3 / 2$, then this has a row of all zeroes, and the solution will be: x_{3} is arbitrary, $x_{1}+a x_{3}=0$, and $x_{2}+(5-3 a) x_{3}=0$. Thus there are infinitely many solutions, so the vectors are linearly dependent.
If, on the other hand, $a \neq 3 / 2$, then the matrix is row-equivalent to

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right],
$$

which means that they are linearly independent. So the answer is: $a \neq 3 / 2$.
(b) (5 points) For which values of a is $\left\{v_{1}, v_{2}, v_{3}\right\}$ linearly dependent?

Solution: The vectors are linearly dependent when $a=3 / 2$.
3. (10 points) Find the interpolating polynomial for the data

t	0	1	2
y	2	2	3

Solution: We're looking for a formula like $y=a t^{2}+b t+c$ (degree 2 since there are three points specified). Plug in the three points $(0,2),(1,2)$, and $(2,3)$ to get

$$
\begin{array}{r}
c=2 \\
a+b+c=2 \\
4 a+2 b+c=3
\end{array}
$$

You can solve this by row-reduction, or just by playing with the equations. Plugging $c=2$ into the second equation gives $a+b=0$, so $b=-a$. Plugging this into the last equation gives $4 a-2 a+2=$ 3 , so $a=1 / 2$. So the formula is $y=\frac{1}{2} t^{2}-\frac{1}{2} t+2$.
(Now check it: plug in $t=0, t=1$, and $t=2$, and see if you get 2,2 , and 3 , respectively.)
4. (10 points) Find all α and β which satisfy

$$
\begin{aligned}
4 \alpha^{2}-2 \beta^{2} & =1 \\
-3 \alpha^{2}+2 \beta^{2} & =5
\end{aligned}
$$

Solution: Let $x=\alpha^{2}$ and $y=\beta^{2}$. Then I have a system of linear equations

$$
\begin{array}{r}
4 x-2 y=1 \\
-3 x+2 y=5
\end{array}
$$

You can solve this by whatever means you like; the result is $x=6$ and $y=23 / 2$. Therefore $\alpha=$ $\pm \sqrt{6}$ and $\beta= \pm \sqrt{23 / 2}$.
(Check it, either after finding x and y by plugging them in, or by plugging α and β into the original equations.)
5. (a) (10 points) Put the matrix

$$
\left[\begin{array}{ccccc}
0 & 0 & 2 & 8 & 4 \\
0 & 1 & 3 & 11 & 9 \\
3 & -3 & -9 & -24 & -33 \\
-2 & 1 & 6 & 17 & 21
\end{array}\right]
$$

into reduced row echelon form.

Solution: Okay, here we go:

$$
\begin{aligned}
{\left[\begin{array}{ccccc}
0 & 0 & 2 & 8 & 4 \\
0 & 1 & 3 & 11 & 9 \\
3 & -3 & -9 & -24 & -33 \\
-2 & 1 & 6 & 17 & 21
\end{array}\right] } & \xrightarrow{\mathbf{R}_{1} \leftrightarrow \mathbf{R}_{3}}\left[\begin{array}{ccccc}
3 & -3 & -9 & -24 & -33 \\
0 & 1 & 3 & 11 & 9 \\
0 & 0 & 2 & 8 & 4 \\
-2 & 1 & 6 & 17 & 21
\end{array}\right] \\
& \xrightarrow{\frac{1}{3} \mathbf{R}_{1}}\left[\begin{array}{ccccc}
1 & -1 & -3 & -8 & -11 \\
0 & 1 & 3 & 11 & 9 \\
0 & 0 & 2 & 8 & 4 \\
-2 & 1 & 6 & 17 & 21
\end{array}\right] \\
& \xrightarrow{\mathbf{R}_{4}+2 \mathbf{R}_{1}\left[\begin{array}{ccccc}
1 & -1 & -3 & -8 & -11 \\
0 & 1 & 3 & 11 & 9 \\
0 & 0 & 2 & 8 & 4 \\
0 & -1 & 0 & 1 & -1
\end{array}\right]} \\
& \xrightarrow{\mathbf{R}_{1}+\mathbf{R}_{2}, \mathbf{R}_{4}+\mathbf{R}_{2}}\left[\begin{array}{ccccc}
1 & 0 & 0 & 3 & -2 \\
0 & 1 & 3 & 11 & 9 \\
0 & 0 & 2 & 8 & 4 \\
0 & 0 & 3 & 12 & 8
\end{array}\right] \\
& \xrightarrow{\frac{1}{2} \mathbf{R}_{3}}\left[\begin{array}{ccccc}
1 & 0 & 0 & 3 & -2 \\
0 & 1 & 3 & 11 & 9 \\
0 & 0 & 1 & 4 & 2 \\
0 & 0 & 3 & 12 & 8
\end{array}\right]
\end{aligned}
$$

This last matrix is in reduced row-echelon form.
(Problem 5, continued)
(b) (5 points) Solve the system

$$
\begin{aligned}
2 x_{3}+8 x_{4} & =4 \\
x_{2}+3 x_{3}+11 x_{4} & =9 \\
3 x_{1}-3 x_{2}-9 x_{3}-24 x_{4} & =-33 \\
-2 x_{1}+x_{2}+6 x_{3}+17 x_{4} & =21
\end{aligned}
$$

Solution: The matrix in part (a) is exactly the augmented matrix for this system. The last row of that matrix corresponds to the equation $0=1$, so the system has no solutions.
(c) (5 points) Is this system consistent or inconsistent?

Solution: The system is inconsistent.
6. (10 points) Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right] .
$$

Find all b so that $A B=B A$.

Solution: Well,

$$
A B=\left[\begin{array}{ccc}
1 & 6 & 10+2 b \\
0 & 1 & b+2 \\
0 & 0 & 1
\end{array}\right]
$$

and

$$
B A=\left[\begin{array}{ccc}
1 & 6 & 18 \\
0 & 1 & b+2 \\
0 & 0 & 1
\end{array}\right]
$$

These only differ in the upper right corner, so for them to be equal, we must have $10+2 b=18$, which means that $b=4$.

