Solutions, homework assignment 7

Problem from web page: Suppose that $A \mathbf{x}=\lambda \mathbf{x}$. Let $f(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+$ $a_{k} t^{k}$. Then

$$
\begin{aligned}
f(A) \mathbf{x} & =\left(a_{0} I+a_{1} A+a_{2} A^{2}+\cdots+a_{k} A^{k}\right) \mathbf{x} \\
& =a_{0} I \mathbf{x}+a_{1} A \mathbf{x}+a_{2} A^{2} \mathbf{x}+\cdots+a_{k} A^{k} \mathbf{x}
\end{aligned}
$$

Now apply Theorem 11(a) to compute $A^{i} \mathbf{x}$ for each i :

$$
\begin{aligned}
& =a_{0} \mathbf{x}+a_{1} \lambda \mathbf{x}+a_{2} \lambda^{2} \mathbf{x}+\cdots+a_{k} \lambda^{k} \mathbf{x} \\
& =\left(a_{0}+a_{1} \lambda+a_{2} \lambda^{2}+\cdots+a_{k} \lambda^{k}\right) \mathbf{x} \\
& =f(\lambda) \mathbf{x}
\end{aligned}
$$

as desired.
Section 4.4: 24: (a) If B is a 3×3 matrix satisfying $B \mathbf{x}=\mathbf{0}$ for every vector \mathbf{x}, then B must be the zero matrix: the columns of B are equal to $B \mathbf{e}_{i}$, for $i=1,2,3$, so each column is equal to $\mathbf{0}$, so the whole matrix is filled with zeroes.
(b) Now suppose that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is a linearly independent set, where $A \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}$ for each i. Since $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is a set of three linearly independent vectors in \mathbf{R}^{3}, it must form a basis (see Theorem 9 on p. 207), and therefore every vector in \mathbf{R}^{3} can be written as a linear combination of these.

Now let \mathbf{v} be any vector in \mathbf{R}^{3}. I want to show that $p(A) \mathbf{v}=\mathbf{0}$; I can then apply part (a) to conclude that $p(A)$ is the zero matrix. Write \mathbf{v} as a linear combination of the vectors \mathbf{u}_{i} :

$$
\mathbf{v}=a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}
$$

Now compute $p(A) \mathbf{v}$:

$$
\begin{aligned}
p(A) \mathbf{v} & =p(A)\left(a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}\right) \\
& =p(A) a_{1} \mathbf{u}_{1}+p(A) a_{2} \mathbf{u}_{2}+p(A) a_{3} \mathbf{u}_{3} \\
& =a_{1} p(A) \mathbf{u}_{1}+a_{2} p(A) \mathbf{u}_{2}+a_{3} p(A) \mathbf{u}_{3}
\end{aligned}
$$

Now apply the previous problem:

$$
=a_{1} p\left(\lambda_{1}\right) \mathbf{u}_{1}+a_{2} p\left(\lambda_{2}\right) \mathbf{u}_{2}+a_{3} p\left(\lambda_{3}\right) \mathbf{u}_{3}
$$

The numbers λ_{1}, λ_{2}, and λ_{3} are roots of $p(t)$, so $p\left(\lambda_{i}\right)=0$ for all i. Therefore the above sum is equal to the zero vector: $p(A) \mathbf{v}=\mathbf{0}$. This is exactly what I wanted to show. I can conclude that $p(A)$ is the zero matrix.

