Solutions, homework assignment 6

Section 4.2: 23: The matrices in question are

$$
A_{2}=\left[\begin{array}{ll}
d & 1 \\
1 & d
\end{array}\right], A_{3}=\left[\begin{array}{lll}
d & 1 & 1 \\
1 & d & 1 \\
1 & 1 & d
\end{array}\right], \quad \text { and } \quad A_{4}=\left[\begin{array}{cccc}
d & 1 & 1 & 1 \\
1 & d & 1 & 1 \\
1 & 1 & d & 1 \\
1 & 1 & 1 & d
\end{array}\right]
$$

The determinant of A_{2} is $d^{2}-1=(d-1)(d+1)$, which fits the formula.
To compute the determinant of A_{3}, expand along the first row:

$$
\begin{aligned}
\operatorname{det}\left(A_{3}\right) & =d \cdot \operatorname{det}\left(A_{2}\right)-\left|\begin{array}{ll}
1 & 1 \\
1 & d
\end{array}\right|+\left|\begin{array}{ll}
1 & d \\
1 & 1
\end{array}\right| \\
& =d(d-1)(d+1)-2(d-1) \\
& \left.=(d-1)\left(\left(d^{2}+d\right)-2\right) \quad \text { (factor out } d-1\right) \\
& =(d-1)(d-1)(d+2) \\
& =(d-1)^{2}(d+2)
\end{aligned}
$$

This fits the formula.
To compute the determinant of A_{4}, expand along the first row:

$$
\begin{aligned}
\operatorname{det}\left(A_{4}\right) & =d \cdot \operatorname{det}\left(A_{3}\right)-\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & d & 1 \\
1 & 1 & d
\end{array}\right|+\left|\begin{array}{ccc}
1 & d & 1 \\
1 & 1 & 1 \\
1 & 1 & d
\end{array}\right|-\left|\begin{array}{lll}
1 & d & 1 \\
1 & 1 & d \\
1 & 1 & 1
\end{array}\right| \\
& =d(d-1)^{2}(d+2)-3\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & d & 1 \\
1 & 1 & d
\end{array}\right| \quad \text { (switch rows around in the last two matrices) } \\
& =(d-1)^{2}\left(d^{2}+2 d\right)-3(d-1)^{2} \quad \text { (expand along first row) } \\
& =(d-1)^{2}\left(d^{2}+2 d-3\right) \\
& =(d-1)^{2}(d-1)(d+3) \\
& =(d-1)^{2}(d+3) .
\end{aligned}
$$

This is what it's supposed to be.
Here's another solution based on one that several people turned in, and I'll just do the 4×4 case (although the method works for matrices of any size): first add rows 1 , 2 , and 3 to row 4 . This doesn't change the determinant, but it turns the matrix into

$$
\left[\begin{array}{cccc}
d & 1 & 1 & 1 \\
1 & d & 1 & 1 \\
1 & 1 & d & 1 \\
d+3 & d+3 & d+3 & d+3
\end{array}\right]
$$

By properties of determinants, I get

$$
\operatorname{det}\left[\begin{array}{cccc}
d & 1 & 1 & 1 \\
1 & d & 1 & 1 \\
1 & 1 & d & 1 \\
d+3 & d+3 & d+3 & d+3
\end{array}\right]=(d+3) \operatorname{det}\left[\begin{array}{cccc}
d & 1 & 1 & 1 \\
1 & d & 1 & 1 \\
1 & 1 & d & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

In this last matrix, subtract the last row from each of the others:

$$
=(d+3) \operatorname{det}\left[\begin{array}{cccc}
d-1 & 0 & 0 & 0 \\
0 & d-1 & 0 & 0 \\
0 & 0 & d-1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

This matrix is lower triangular, so it's determinant is easy to compute:

$$
=(d+3)(d-1)^{3} .
$$

Section 4.3: 28: Suppose that A is skew symmetric: suppose that $A^{T}=-A$. Therefore $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(-A)$. By Theorem 5, the left side of this equals $\operatorname{det}(A)$. Since $-A$ is formed from A by multiplying each of the n rows by -1 , I can apply Theorem $7 n$ times to get $\operatorname{det}(-A)=(-1)^{n} \operatorname{det}(A)$. Therefore

$$
\operatorname{det}(A)=(-1)^{n} \operatorname{det}(A)
$$

If n is odd, then $(-1)^{n}$ equals -1 , so this equation becomes

$$
\operatorname{det}(A)=-\operatorname{det}(A)
$$

which means that $\operatorname{det}(A)=0$. By Theorem 3 (p. 287), this means that A is singular.

