Solutions, homework assignment 5

Section 3.6, 22: By theorem 13 , the set of vectors $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is linearly independent. Therefore the columns of A are linearly independent, so A is nonsingular. In the product $A^{T} A$, the (i, j)-entry is formed by taking the dot product of the i th row of A^{T} with the j th column of A. Since the rows of A^{T} are the columns of A, this is the same as taking the dot product of the i th column of A with the j th column of A. Therefore $A^{T} A$ is equal to

$$
\left[\begin{array}{lll}
\mathbf{u}_{1} \cdot \mathbf{u}_{1} & \mathbf{u}_{1} \cdot \mathbf{u}_{2} & \mathbf{u}_{1} \cdot \mathbf{u}_{3} \\
\mathbf{u}_{2} \cdot \mathbf{u}_{1} & \mathbf{u}_{2} \cdot \mathbf{u}_{2} & \mathbf{u}_{2} \cdot \mathbf{u}_{3} \\
\mathbf{u}_{3} \cdot \mathbf{u}_{1} & \mathbf{u}_{3} \cdot \mathbf{u}_{2} & \mathbf{u}_{3} \cdot \mathbf{u}_{3}
\end{array}\right]
$$

Since the vectors \mathbf{u}_{i} are orthogonal, the dot products $\mathbf{u}_{i} \cdot \mathbf{u}_{\mathbf{j}}$ are zero whenever $i \neq j$. Therefore this product equals

$$
\left[\begin{array}{ccc}
\mathbf{u}_{1} \cdot \mathbf{u}_{1} & 0 & 0 \\
0 & \mathbf{u}_{2} \cdot \mathbf{u}_{2} & 0 \\
0 & 0 & \mathbf{u}_{3} \cdot \mathbf{u}_{3}
\end{array}\right]
$$

This is a diagonal matrix, as desired. Notice that the diagonal entries are the squares of the lengths of the vectors \mathbf{u}_{i}.

For the vectors from exercise 1, this turns out to be

$$
\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 6
\end{array}\right] .
$$

Section 3.7, 44: The answer is: $A=a I_{n}$: the scalar a multiplied by the $n \times n$ identity matrix. That is, it's the matrix

$$
\left[\begin{array}{ccccc}
a & 0 & 0 & \cdots & 0 \\
0 & a & 0 & \cdots & 0 \\
0 & 0 & a & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a
\end{array}\right] .
$$

(You can compute this by using Theorem 15, for example.)

