Solutions, homework assignment 4

Section 3.5, 36: The rank of *A* is defined to be the dimension of the range. Since the range is equal to the column space of *A*, the rank is therefore equal to the dimension of the column space. Since *A* by assumption has *n* columns, its column space is spanned by *n* vectors, and so its dimension is at most *n*. Thus $rk(A) \le n$. By theorem 10 in the book, $rk(A) = rk(A^T)$. A^T has *m* columns, so its rank is at most *m*, and thus $rk(A) \le m$. Another way to show that $rk(A) \le m$: the range of *A* is a subspace of \mathbb{R}^m , and every

Subspace of \mathbb{R}^m has dimension at most *m*. Hence $\operatorname{rk}(A) \leq m$.

Another way to show that $rk(A) \le n$: the rank-nullity theorem says that

$$\operatorname{rk}(A) + \operatorname{nullity}(A) = n.$$

The nullity of *A* cannot be negative, so $rk(A) \le n$.

Section 3.5, 38: The the rank-nullity formula (the remark at the bottom of page 209) says that if *A* is $m \times n$, then

$$n = \operatorname{rk}(A) + \operatorname{nullity}(A).$$

So if *A* is 3×4 with nullity 1, then its rank is 3. Thus its range has dimension 3, and since the range is a subspace of \mathbf{R}^3 , the range must be all of \mathbf{R}^3 . Now, the range consists of all vectors **b** for which the system $A\mathbf{x} = \mathbf{b}$ is consistent (I've discussed this in class; also see the sentence after the definition of range on page 181 in the book). Therefore, for every vector **b** in \mathbf{R}^3 , the system $A\mathbf{x} = \mathbf{b}$ is consistent.