Solutions, homework assignment 3

Section 3.3, 50: (a) The range of the $n \times n$ identity matrix I_{n} is all of \mathbf{R}^{n} : for any $\mathbf{y} \in \mathbf{R}^{n}$, if I let $\mathbf{x}=\mathbf{y}$, then $I_{n} \mathbf{x}=\mathbf{y}$.

The null space of I_{n} is $\{\mathbf{0}\}$: since $I_{n} \mathbf{x}=\mathbf{x}$ for any \mathbf{x} in \mathbf{R}^{n}, the only solution to $I_{n} \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$.
(b) The $n \times n$ zero matrix O has the property that $O \mathbf{x}=\mathbf{0}$ for any vector \mathbf{x} in \mathbf{R}^{n}. Therefore its range is $\{\mathbf{0}\}$, because $\mathbf{0}$ is the only thing which can appear on the right side of the equation $O \mathbf{x}=\mathbf{y}$, and its null space is all of \mathbf{R}^{n}.
(c) If A is an $n \times n$ nonsingular matrix, then its range is all of \mathbf{R}^{n}, and its null space is $\{\mathbf{0}\}$. I'll provide two explanations. First, since A is nonsingular, the only solution to the equation $A \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$ - that's the definition of nonsingular. This means that the only vector in the null space of A is the zero vector.

Also, Theorem 13 in Section 1.7 says that for any $n \times 1$ vector \mathbf{b}, there is a unique solution to $A \mathbf{x}=\mathbf{b}$. That is, for any vector \mathbf{b}, the system $A \mathbf{x}=\mathbf{b}$ is consistent. Therefore every $n \times 1$ column vector \mathbf{b} is in the range, so the range is all of \mathbf{R}^{n}.

The second explanation: I'll use the fact that since A is nonsingular, it is invertible. Suppose that \mathbf{y} is in \mathbf{R}^{n}. Let $\mathbf{x}=A^{-1} \mathbf{y}$. Then

$$
A \mathbf{x}=A\left(A^{-1} \mathbf{y}\right)=\left(A A^{-1}\right) \mathbf{y}=I_{n} \mathbf{y}=\mathbf{y} .
$$

Thus \mathbf{y} is in the range of A. Also, if \mathbf{x} is in the null space of A, then

$$
\mathbf{x}=I_{n} \mathbf{x}=\left(A^{-1} A\right) \mathbf{x}=A^{-1}(A \mathbf{x})
$$

Since \mathbf{x} is in the null space, $A \mathbf{x}=\mathbf{0}$, so

$$
\mathbf{x}=A^{-1} \mathbf{0}=\mathbf{0}
$$

Thus $\mathbf{x}=\mathbf{0}$: the only vector in the null space of A is the zero vector.
Section 3.3, 52: (a) Suppose that \mathbf{x} is in $\mathscr{N}(B)$, the null space of B. This means that $B \mathbf{x}=\mathbf{0}$. I want to show that $(A B) \mathbf{x}=\mathbf{0}$. Well,

$$
(A B) \mathbf{x}=A(B \mathbf{x})
$$

but $B \mathbf{x}=\mathbf{0}$. Therefore $(A B) \mathbf{x}=\mathbf{0}$, which means that \mathbf{x} is in $\mathscr{N}(A B)$.
(b) Suppose that \mathbf{y} is in $\mathscr{R}(A B)$, the range of $A B$. Then there is a vector \mathbf{x} such that $(A B) \mathbf{x}=\mathbf{y}$. Let $\mathbf{z}=B \mathbf{x}$. Then $A \mathbf{z}=\mathbf{y}$, which means that \mathbf{y} is in the range of A, as desired.

