Solutions, homework assignment 2

Section 1.5, 56: The first part of this is a pretty routine verification. If O is the zero matrix $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, then $O^{2}=O$ and $2 O=O$, so the left side of the equation is $O^{2}-2 O=$ $O-O=O$. Thus the equation holds.

If $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$, then I could just plug A into the equation and see that it works. I can also observe that $A=2 I$, where I is the 2×2 identity matrix. Thus $A^{2}=(2 I)^{2}=4 I$, and also $2 A=2(2 I)=4 I$. Thus $A^{2}-2 A=O$.

Finally, if $B=\left[\begin{array}{cc}1 & b \\ b^{-1} & 1\end{array}\right]$, then $B^{2}=\left[\begin{array}{cc}2 & 2 b \\ 2 b^{-1} & 2\end{array}\right]=2 B$, so $B^{2}-2 B=O$.
Since b can be any number, there are infinitely many choices of matrix B which are solutions to the equation.

Section 1.6, 32: If $G=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$ and $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, then some matrix multiplication calculations give

$$
\mathbf{x}^{T} G \mathbf{x}=2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}
$$

which I can rewrite as

$$
=x_{1}^{2}+\left(x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}\right)=x_{1}^{2}+\left(x_{1}+x_{2}\right)^{2} .
$$

Since both terms here are squared, each is greater than or equal to zero, and so their sum is, also. To complete the problem, I need to explain why the sum must be strictly greater than zero. There are two cases: (1) If $x_{1} \neq 0$, then the first term x_{1}^{2} is positive, so $\mathbf{x}^{T} G \mathbf{x}>0$. (2) If $x_{1}=0$, then the formula for $\mathbf{x}^{t} G \mathbf{x}$ then equals x_{2}^{2}. Because of the assumption that x_{1} and x_{2} are not both zero, I can conclude that x_{2} is nonzero, which means that $\mathbf{x}^{T} G \mathbf{x}=x_{2}^{2}$ is positive.

