Solutions, homework assignment 1

Section 1.2, 38: First I'll convert the system to an augmented matrix:

$$
\left[\begin{array}{lll}
2 & 4 & a \\
3 & 6 & 5
\end{array}\right]
$$

Now I'll row-reduce this:

$$
\left[\begin{array}{lll}
2 & 4 & a \\
3 & 6 & 5
\end{array}\right] \xrightarrow{\frac{1}{2} \mathbf{R}_{1}}\left[\begin{array}{ccc}
1 & 2 & a / 2 \\
3 & 6 & 5
\end{array}\right] \xrightarrow{\mathbf{R}_{2}-3 \mathbf{R}_{1}}\left[\begin{array}{ccc}
1 & 2 & a / 2 \\
0 & 0 & 5-3 a / 2
\end{array}\right]
$$

The last row translates into the equation $0=5-3 a / 2$. If $5-3 a / 2=0$, which is to say if $a=10 / 3$, then the matrix is in reduced echelon form, and the system has infinitely many solutions.

If $5-3 a / 2$ is nonzero, then the last row translates to the false equation $0=5-3 a / 2$, in which case the system has no solutions.

So the system has no solutions precisely when $a \neq 10 / 3$.
Section 1.2, 42: The given system is not linear, but if I make the substitutions $x=$ $\cos ^{2} \alpha$ and $y=\sin ^{2} \beta$, I do get a linear system:

$$
\begin{array}{ccc}
2 x-y & =1 \\
12 x+8 y & =13
\end{array}
$$

Replace this with an augmented matrix, and row-reduce:

$$
\begin{aligned}
{\left[\begin{array}{ccc}
2 & -1 & 1 \\
12 & 8 & 13
\end{array}\right] } & \xrightarrow{\frac{1}{2} \mathbf{R}_{1}}\left[\begin{array}{ccc}
1 & -1 / 2 & 1 / 2 \\
12 & 8 & 13
\end{array}\right] \xrightarrow{\mathbf{R}_{2}-12 \mathbf{R}_{1}}\left[\begin{array}{ccc}
1 & -1 / 2 & 1 / 2 \\
0 & 14 & 7
\end{array}\right] \\
& \xrightarrow{\frac{1}{1} \mathbf{R}_{2}}\left[\begin{array}{ccc}
1 & -1 / 2 & 1 / 2 \\
0 & 1 & 1 / 2
\end{array}\right] \xrightarrow{\mathbf{R}_{1}+\frac{1}{2} \mathbf{R}_{2}}\left[\begin{array}{ccc}
1 & 0 & 3 / 4 \\
0 & 1 & 1 / 2
\end{array}\right]
\end{aligned}
$$

This is in reduced echelon form, and gives the solution

$$
x=3 / 4, \quad y=1 / 2
$$

hence

$$
\cos ^{2} \alpha=3 / 4, \quad \sin ^{2} \beta=1 / 2
$$

Therefore

$$
\cos \alpha= \pm \sqrt{3} / 2, \quad \sin \beta= \pm 1 / \sqrt{2}
$$

so

$$
\begin{aligned}
& \alpha=\pi / 6,5 \pi / 6,7 \pi / 6,11 \pi / 6 \\
& \beta=\pi / 4,3 \pi / 4,5 \pi / 4,7 \pi / 4
\end{aligned}
$$

