Instructions: Your homework is in two parts, which you should turn in separately. This is not the same as the week 9 course packet homework: it is shorter. It is missing problem 3 (the exercises from Section 9.4), it is missing "worksheet" problems 5 and 6, and there are fewer exercises assigned from sections 9.1 and 9.3.

Due Wednesday, November 29, in lecture.

Week 9 Homework Problems, part A

1 Stewart, section 9.1: \#1, 2, 4, 5, 7, 9
2 Stewart, section 9.3: \#1, 2, 3, 9, 11, 12, 38, 39

Week 9 Homework Problems, part B

4 Suppose you drop a stone of mass m from a great height in the earth's atmosphere, and the only forces acting on the stone are the earth's gravitational attraction ($g \approx 9.8 \mathrm{~m} / \mathrm{s}^{2}$) and a retarding force due to air resistance, which is proportional to the velocity v. Then, since $F=m a$ and $a=\frac{d v}{d t}$, we have the differential equation $m \frac{d v}{d t}=m g-k v$ (where k is some constant).
a) Find v as a function of time t.
b) Calculate $\lim _{t \rightarrow \infty} v(t)$, the terminal velocity of the stone.

7 A person borrows $\$ 10,000$ and repays the loan at the rate of $\$ 2400 /$ year. The lender charges interest of $10 \% /$ year. Assuming that payments are made continuously and interest is compounded continuously (a pretty good approximation to reality for long-term loans), the amount of money owed t years after the loan is made, $M(t)$, then satisfies

$$
\frac{d M}{d t}=\frac{1}{10} M-2400, \quad M(0)=10000
$$

a) Solve this differential equation for $M(t)$.
b) How long does it take to pay off the loan? That is, at what time t is $M(t)=0$?

