Instructions: Your homework is in two parts, which you should turn in separately. This is not the same as the week 8 course packet homework. There are too many differences to list them all here; just print out this and use it instead of the course packet homework.

Due Wednesday, November 22, in lecture.

Week 8 Homework Problems, part A

1 Stewart, section 8.1: \#1, 2, 9, 15, 23 (omit calculator part), 30
2 Stewart, section 8.3: \#23, 25, 29, 32

Week 8 Homework Problems, part B

3 Let k be greater than 1 .
a) Write a definite integral for the arclength of $y=x^{k}$ from $x=0$ to $x=b$. Do not try to solve the integral.
b) One case when this integral can be easily evaluated is when $k=\frac{3}{2}$. In that case use a substitution to evaluate the integral and find a formula for the arclength in terms of b.
c) Use an inverse trig substitution to find a formula for the arclength in the case when $k=2$.
d) Use Simpson's Rule with 6 sub-intervals to estimate the arclength in the case when $k=3$ and $b=1$.

4 Consider a uniform flat plate bounded by the graph of $y=1 /\left(1+x^{2}\right)$, the graph of $y=-1 /\left(1+x^{2}\right)$ and the y-axis. Show that the plate has finite mass, but does not have center of mass at a finite distance. (This means that you could lift up the plate, but you could not balance it!)

5 Find the x-coordinate of the center of mass of the uniform flat plate bounded by the x - and y-axes, the line $x=2$ and the curve $y=\frac{1}{\sqrt{x^{2}+6 x+13}}$.

6 The formula for the arc length of a curve given parametrically by $(x(t), y(t))$, for $a \leq t \leq b$, is

$$
L=\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

A path of a point on the edge of a rolling circle of radius R is a cycloid, given by

$$
\begin{aligned}
& x(t)=R(t-\sin t) \\
& y(t)=R(1-\cos t)
\end{aligned}
$$

where t is the angle the circle has rotated.
Find the length of one "arch" of this cycloid, that is, find the distance traveled by a small stone stuck in the tread of a tire of radius R during one revolution of the rolling tire.

