Instructions: DO NOT TURN IN. This is practice for the midterm. I will base some of the midterm problems on some of the problems here.

1 Stewart, section 7.7: \#5, 9, 10, 13, 30, 32, 35, 39
2 Stewart, section 7.8: \#1, 3, 7, 9, 13, 19, 27, 30, 31, 64, 69, 70

3 The portion of the graph of $y=\tan ^{-1} x$ between $x=0$ and $x=1$ is rotated around the y-axis to form a container. The container is filled with water. Use $n=6$ subdivisions and Simpson's Rule to approximate the work required to pump all the water out over the side. Distance is measured in meters and the density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.

4 The rocket in Problem 3 of Week 4 required the following force when the rocket was at a distance of x from the center of the moon:

$$
F(x)=\frac{R^{2} P}{x^{2}} \text { pounds }
$$

a) The total amount of work done raising the payload from the surface (an altitude of 0 , so $x=R$) to an altitude of $R(x=2 R)$ is

$$
W=\int_{a}^{b} F(x) d x=\int_{R}^{2 R} \frac{R^{2} P}{x^{2}} d x=\square \text { mile-pounds. }
$$

b) How much work will be needed to raise the payload from the surface of the moon to the "end of the universe"?

