Instructions: Your homework is in two parts, which you should turn in separately. Except for the division into parts A and B , this is identical to the week 5 homework in the course packet.

Due Wednesday, November 1, in lecture.

Week 5 Homework Problems, part A

1 Stewart, section 7.1: \#1, 5, 7, 13, 19, 25, 33, 35, 60, 61, 63
2 Stewart, section 7.2: \#5, 9, 14, 19, 27, 55, 63
3 Stewart, section 7.3: \#3, 5, 7, 25, 26, 27, 28, 33, 40

Week 5 Homework Problems, part B

4 A doughnut has been partially eaten by a meticulous person so that the portion remaining is given by rotating the half circular region shown about the y-axis. What proportion of the doughnut remains, assuming that the doughnut was the volume of revolution of the full circle?

5 A pair of functions f and g are said to be orthogonal on the interval $[a, b]$ if $\int_{a}^{b} f(x) g(x) d x=0$. A family of functions is said to be orthogonal on $[a, b]$ if each distinct pair of functions $f \neq g$ in the family is orthogonal on $[a, b]$.
Show that the family of trigonometric functions

$$
\{\sin (x), \cos (x), \sin (2 x), \cos (2 x), \ldots, \sin (n x), \cos (n x), \ldots\}
$$

is orthogonal on the interval $[0,2 \pi]$. (You need to show that the pairs $\sin (M x), \sin (N x)$ and $\cos (M x), \cos (N x)$ are orthogonal for all positive integers $M \neq N$, and that the pair $\sin (M x), \cos (N x)$ is orthogonal for all positive integers M and N.)

This result about the orthogonality of the sine and cosine functions is the basis for an important area of mathematics called Fourier series.

6 a) Determine the average values of x, x^{2}, x^{3}, and x^{4} on the interval [1,2].
b) Determine the average values of $\sin (x), \sin ^{2}(x), \sin ^{3}(x)$, and $\sin ^{4}(x)$ on the interval $[0, \pi]$.
c) Explain geometrically why the average values in a) increased, while those in b) decreased.

