Mathematics 411

9 December 2005 Final exam preview

Instructions: As always in this course, clarity of exposition is as important as correctness of mathematics.

1. Recall that a *Gaussian integer* is a complex number of the form a + bi where a and b are integers. The Gaussian integers form a ring $\mathbf{Z}[i]$, in which the number 3 has the following special property:

Given any two Gaussian integers r and s, if 3 divides the product rs, then 3 divides either r or s (or both).

Use this fact to prove the following theorem:

For any integer $n \ge 1$, given *n* Gaussian integers r_1, r_2, \ldots, r_n , if 3 divides the product $r_1 \cdots r_n$, then 3 divides at least one of the factors r_i .

2. (a) Use the Euclidean algorithm to find an integer solution to the equation

$$7x + 37y = 1$$
.

(b) Explain how to use the solution of part (a) to find a solution to the congruence

$$7x \equiv 1 \pmod{37}$$
.

- (c) Use part (b) to explain why [7] is a unit in the ring \mathbf{Z}_{37} .
- 3. Given a Gaussian integer t that is neither zero nor a unit in $\mathbf{Z}[i]$, a factorization t = rs in $\mathbf{Z}[i]$ is *nontrivial* if neither r nor s is a unit.
 - (a) List the units in $\mathbb{Z}[i]$, indicating for each one what its multiplicative inverse is. No proof is necessary.
 - (b) Provide a nontrivial factorization of 53 in $\mathbf{Z}[i]$. Explain why your factorization is nontrivial.
 - (c) Suppose that p is a prime number in \mathbb{Z} that has no nontrivial factorizations in $\mathbb{Z}[i]$. Prove that the equation

$$x^2 + y^2 = p$$

has no integer solutions. (For full credit, do this from scratch: you shouldn't need to cite any results from the book.)

- 4. Suppose that *R* is a ring with additive identity 0. An element *r* of *R* is called a *zero-divisor* if *r* is nonzero and if there is a nonzero element *s* of *R* such that rs = 0.
 - (a) Find a zero-divisor in \mathbf{Z}_{10} and explain why it is one.
 - (b) Suppose that $m \ge 2$ is an integer that is not a prime. Describe a zero-divisor in \mathbb{Z}_m and explain why it is one.
 - (c) Suppose that p is a prime number. Recall that if p divides a product ab of two integers, then it divides at least one of a and b. Use this to prove that there are no zero-divisors in \mathbb{Z}_p .
- 5. One can construct a ring *R* with six elements: $R = \{a, b, c, d, e, f\}$, with multiplication table as follows:

×	a	b	С	d	е	f
a	а	а	а	а	а	a
b	а	b	С	а	b	С
С	а	С	b	а	С	b
d	а	а	а	d	d	d
е	а	b	С	d	е	f
f	а	С	b	d	f	е

- (a) Which element of *R* is the multiplicative identity? Why?
- (b) Which elements of *R* are units? Why?
- (c) Is *R* a field? Why or why not?
- (d) Can the multiplication table above be the multiplication table of \mathbb{Z}_6 , with the six elements of \mathbb{Z}_6 being assigned (somehow) the names *a*, *b*, *c*, *d*, *e*, and *f*?
- 6. In this problem, ϕ represents the Euler phi-function and *m* is a positive integer.
 - (a) Define $\phi(m)$.
 - (b) Suppose $m = p^e$ for some prime number p and positive integer e. State a formula for $\phi(m)$ in terms of p and e, and prove that the formula is correct. (For full credit, do this from scratch: you shouldn't need to cite any results from the book.)
 - (c) State Euler's theorem. Make sure that all of the terms occurring are clearly identified and any restrictions on them are described.
 - (d) Use Euler's theorem to find the smallest positive integer c such that

$$5^{773} \equiv c \pmod{121}.$$

Explain what you are doing in your calculation, pointing out in particular how Euler's theorem is used.