This problem is extracted from Dummit and Foote, problems 9.5.5 and 9.5.6.
Let $\varphi(n)$ denote the Euler φ-function: for any positive integer $n, \varphi(n)$ is the number of positive integers less than or equal to n which are relatively prime to n. By convention, $\varphi(1)=1$. You may use the following facts about φ :

- If p is prime, then $\varphi(p)=p-1$.
- If p^{k} is a power of a prime p, then $\varphi\left(p^{k}\right)=p^{k-1}(p-1)$.
- If a and b are relatively prime, then $\varphi(a b)=\varphi(a) \varphi(b)$.
- For any positive integer $n, \varphi(n)$ is the order of the group $(\mathbf{Z} / n \mathbf{Z})^{\times}$.

Prove the following:
(a) $\sum_{d \mid n} \varphi(d)=n$. (The notation here means: for every divisor d of n, add up the numbers $\varphi(d)$. For example, if $n=6$, then the sum is $\varphi(1)+\varphi(2)+\varphi(3)+\varphi(6)=1+1+2+2$.)
(b) Let F be a field and let G be a finite subgroup of the group of units F^{\times}. For any integer d, let $\psi(d)$ denote the number of elements of G of order d. Prove that $\psi(d)=\varphi(d)$ for every divisor d of $|G|=n$.
(c) Let $d=n$ to conclude that $\psi(n) \geq 1$, so G is cyclic. That is, any finite subgroup of the group of units of a field is cyclic.

Hints:
(a) Here are two approaches: (i) First prove the formula when n is a power of a prime. In general, write $n=p^{m} n^{\prime}$ for some prime p and some integer n^{\prime} not divisible by p; show that

$$
\sum_{d \mid n} \varphi(d)=\sum_{d^{\prime \prime} \mid p^{m}} \varphi\left(d^{\prime \prime}\right) \sum_{d^{\prime} \mid n^{\prime}} \varphi\left(d^{\prime}\right)
$$

and use induction to finish the proof. (ii) Let C_{n} be a cyclic group of order n and show that since C_{n} contains a unique subgroup of order d for each factor d of n, the number of elements of C_{n} of order d is $\varphi(d)$. Hence $n=\left|C_{n}\right|$ is the sum of $\varphi(d)$ as d ranges over all divisors of n.
(b) For any integer $N, x^{N}-1$ has at most N roots in F, and so $\sum_{d \mid N} \psi(d) \leq N$. Since $\sum_{d \mid N} \varphi(d)=N$, show by induction that $\psi(d) \leq \varphi(d)$ for every divisor d of n. Since $\sum_{d \mid n} \psi(d)=n=\sum_{d \mid n} \varphi(d)$, conclude that $\psi(d)=$ $\varphi(d)$ for every divisor d of n.

