This problem is extracted from Dummit and Foote, problems 9.5.5 and 9.5.6.

Let $\varphi(n)$ denote the *Euler* φ -*function*: for any positive integer n, $\varphi(n)$ is the number of positive integers less than or equal to n which are relatively prime to n. By convention, $\varphi(1) = 1$. You may use the following facts about φ :

- If *p* is prime, then $\varphi(p) = p 1$.
- If p^k is a power of a prime p, then $\varphi(p^k) = p^{k-1}(p-1)$.
- If *a* and *b* are relatively prime, then $\varphi(ab) = \varphi(a)\varphi(b)$.
- For any positive integer *n*, $\varphi(n)$ is the order of the group $(\mathbf{Z}/n\mathbf{Z})^{\times}$.

Prove the following:

- (a) $\sum_{d|n} \varphi(d) = n$. (The notation here means: for every divisor *d* of *n*, add up the numbers $\varphi(d)$. For example, if n = 6, then the sum is $\varphi(1) + \varphi(2) + \varphi(3) + \varphi(6) = 1 + 1 + 2 + 2$.)
- (b) Let *F* be a field and let *G* be a finite subgroup of the group of units F^{\times} . For any integer *d*, let $\psi(d)$ denote the number of elements of *G* of order *d*. Prove that $\psi(d) = \varphi(d)$ for every divisor *d* of |G| = n.
- (c) Let d = n to conclude that ψ(n) ≥ 1, so G is cyclic. That is, any finite subgroup of the group of units of a field is cyclic.

Hints:

(a) Here are two approaches: (i) First prove the formula when *n* is a power of a prime. In general, write $n = p^m n'$ for some prime *p* and some integer *n'* not divisible by *p*; show that

$$\sum_{d|n} \varphi(d) = \sum_{d''|p^m} \varphi(d'') \sum_{d'|n'} \varphi(d'),$$

and use induction to finish the proof. (ii) Let C_n be a cyclic group of order n and show that since C_n contains a unique subgroup of order d for each factor d of n, the number of elements of C_n of order d is $\varphi(d)$. Hence $n = |C_n|$ is the sum of $\varphi(d)$ as d ranges over all divisors of n.

(b) For any integer *N*, $x^N - 1$ has at most *N* roots in *F*, and so $\sum_{d|N} \psi(d) \le N$. Since $\sum_{d|N} \varphi(d) = N$, show by induction that $\psi(d) \le \varphi(d)$ for every divisor *d* of *n*. Since $\sum_{d|n} \psi(d) = n = \sum_{d|n} \varphi(d)$, conclude that $\psi(d) = \varphi(d)$ for every divisor *d* of *n*.