
Mathematics 403A Winter 2005

Theorem 1. e is transcendental.

I will need the following formulation of the Mean Value Theorem.

Theorem 2 (Mean Value Theorem).If g(x) is a continuously differential function on the interval
[x1,x2], then for someθ ∈ (0,1),

g(x1)−g(x2)
x1−x2

= g′(x1 +θ(x2−x1)).

Proof that e is transcendental.[This is fromTopics in Algebraby Herstein.]
Given a polynomialf (x) ∈ R[x] of degreer, let

F(x) = f (x)+ f ′(x)+ f ′′(x)+ · · ·+ f (r)(x).

Then one can check thatddx(e
−xF(x)) = −e−x f (x).

Apply the Mean Value Theorem toe−xF(x), on the interval[0,k], for each positive integerk:
there are numbersθk ∈ (0,1) such that

e−kF(k)−F(0) = −ke(1−θk)k f (θkk).

Also, defineεk to beεk = F(k)−ekF(0). That is,

ε1 = F(1)−eF(0) = −e(1−θ1) f (θ1),

ε2 = F(2)−e2F(0) = −2e2(1−θ2) f (2θ2),
...

εn = F(n)−enF(0) = −nen(1−θn) f (nθn).

Now suppose thate is algebraic: suppose there are integersci such that

cnen +cn−1en−1 + · · ·+c1e+c0 = 0.

We will (eventually) derive a contradiction.
Multiply the equation definingεi by ci and add up the resulting equations:

c1F(1)+c2F(2)+ · · ·+cnF(n)−F(0)(c1e+c2e2 + · · ·+cnen) = c1ε1 +c2ε2 + · · ·+cnεn.

The term in parentheses equals−c0, so I can rewrite this as

c0F(0)+c1F(1)+c2F(2)+ · · ·+cnF(n) = c1ε1 +c2ε2 + · · ·+cnεn.
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This holds for anyf (x); now we pick a particular one. Letp be a prime number such thatp > n
andp > c0. (Later on I’ll assume thatp is even larger, but this is good enough for now.) Let

f (x) =
1

(p−1)!
xp−1(1−x)p(2−x)p . . .(n−x)p.

Then

f (x) =
(n!)p

(p−1)!
xp−1 +

a0

(p−1)!
xp +

a1

(p−1)!
xp+1 + . . .

for some integersa0, a1, . . . .

Claim. For eachi ≥ p, f (i)(x) is a polynomial with integer coefficients, each of which is divisible
by p.

Proof of claim. Exercise.

For j = 1,2, . . . ,n, f ( j) = 0 with multiplicity p, so f (i)( j) = 0 wheni ≤ p−1. Thus

F( j) = f ( j)+ f ′( j)+ · · ·+ f (p−1)( j)︸ ︷︷ ︸+ f (p)( j)+ · · ·+ f (r)( j)︸ ︷︷ ︸
is an integer which is divisible byp: the first bunch of terms are zero, and the second bunch are all
divisible by p, by the claim.

On the other hand, consider

F(0) = f (0)+ f ′(0)+ · · ·+ f (p−2)(0)︸ ︷︷ ︸+ f (p−1)(0)+ f (p)(0)+ . . .︸ ︷︷ ︸ .

The first bunch of terms are all zero, and the last bunch are all divisible byp, but f (p−1)(0) = (n!)p.
Sincep was chosen to be larger thann, this is not divisible byp.

Also, p was chosen to be larger thanc0, and so doesn’t dividec0. As a result,p doesn’t divide
the integerc0F(0)+c1F(1)+ · · ·+cnF(n).

Recall from before thatc0F(0) + c1F(1) + c2F(2) + · · ·+ cnF(n) = c1ε1 + c2ε2 + · · ·+ cnεn.
The left side of this equation is a nonnegative integer (since it is not divisible byp). I will show that
the right side has absolute value less than 1, and this will be a contradiction.

Fix i with 1≤ i ≤ n. From the definition ofεi and the formula forf (x), we see that

εi = −iei(1−θi) f (iθi) =
−iei(1−θi)(iθi)p−1(1− iθ1)p . . .(n− iθi)p

(p−1)!
.

Since 0< θi < 1, we have

|εi | ≤
ennp(n!)p

(p−1)!
.

As p goes to∞, the right hand side goes to zero, so forp a sufficiently large prime,

|c1ε1 + · · ·+cnεn| < 1.

But c1ε1 + · · ·+cnεn must be a nonzero integer. This is the contradiction we were looking for.
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