Mathematics 403A Winter 2005

Theorem 1. e is transcendental.
I will need the following formulation of the Mean Value Theorem.
Theorem 2 (Mean Value Theorem). If $g(x)$ is a continuously differential function on the interval $\left[x_{1}, x_{2}\right]$, then for some $\theta \in(0,1)$,

$$
\frac{g\left(x_{1}\right)-g\left(x_{2}\right)}{x_{1}-x_{2}}=g^{\prime}\left(x_{1}+\theta\left(x_{2}-x_{1}\right)\right)
$$

Proof that e is transcendental. [This is from Topics in Algebra by Herstein.]
Given a polynomial $f(x) \in \mathbf{R}[x]$ of degree r, let

$$
F(x)=f(x)+f^{\prime}(x)+f^{\prime \prime}(x)+\cdots+f^{(r)}(x)
$$

Then one can check that $\frac{d}{d x}\left(e^{-x} F(x)\right)=-e^{-x} f(x)$.
Apply the Mean Value Theorem to $e^{-x} F(x)$, on the interval $[0, k]$, for each positive integer k : there are numbers $\theta_{k} \in(0,1)$ such that

$$
e^{-k} F(k)-F(0)=-k e^{\left(1-\theta_{k}\right) k} f\left(\theta_{k} k\right)
$$

Also, define ε_{k} to be $\varepsilon_{k}=F(k)-e^{k} F(0)$. That is,

$$
\begin{gathered}
\varepsilon_{1}=F(1)-e F(0)=-e^{\left(1-\theta_{1}\right)} f\left(\theta_{1}\right), \\
\varepsilon_{2}=F(2)-e^{2} F(0)=-2 e^{2\left(1-\theta_{2}\right)} f\left(2 \theta_{2}\right), \\
\vdots \\
\varepsilon_{n}=F(n)-e^{n} F(0)=-n e^{n\left(1-\theta_{n}\right)} f\left(n \theta_{n}\right) .
\end{gathered}
$$

Now suppose that e is algebraic: suppose there are integers c_{i} such that

$$
c_{n} e^{n}+c_{n-1} e^{n-1}+\cdots+c_{1} e+c_{0}=0
$$

We will (eventually) derive a contradiction.
Multiply the equation defining ε_{i} by c_{i} and add up the resulting equations:

$$
c_{1} F(1)+c_{2} F(2)+\cdots+c_{n} F(n)-F(0)\left(c_{1} e+c_{2} e^{2}+\cdots+c_{n} e^{n}\right)=c_{1} \varepsilon_{1}+c_{2} \varepsilon_{2}+\cdots+c_{n} \varepsilon_{n}
$$

The term in parentheses equals $-c_{0}$, so I can rewrite this as

$$
c_{0} F(0)+c_{1} F(1)+c_{2} F(2)+\cdots+c_{n} F(n)=c_{1} \varepsilon_{1}+c_{2} \varepsilon_{2}+\cdots+c_{n} \varepsilon_{n} .
$$

This holds for any $f(x)$; now we pick a particular one. Let p be a prime number such that $p>n$ and $p>c_{0}$. (Later on I'll assume that p is even larger, but this is good enough for now.) Let

$$
f(x)=\frac{1}{(p-1)!} x^{p-1}(1-x)^{p}(2-x)^{p} \ldots(n-x)^{p} .
$$

Then

$$
f(x)=\frac{(n!)^{p}}{(p-1)!} x^{p-1}+\frac{a_{0}}{(p-1)!} x^{p}+\frac{a_{1}}{(p-1)!} x^{p+1}+\ldots
$$

for some integers a_{0}, a_{1}, \ldots.
Claim. For each $i \geq p, f^{(i)}(x)$ is a polynomial with integer coefficients, each of which is divisible by p.

Proof of claim. Exercise.
For $j=1,2, \ldots, n, f(j)=0$ with multiplicity p, so $f^{(i)}(j)=0$ when $i \leq p-1$. Thus

$$
F(j)=\underbrace{f(j)+f^{\prime}(j)+\cdots+f^{(p-1)}(j)}+\underbrace{f^{(p)}(j)+\cdots+f^{(r)}(j)}
$$

is an integer which is divisible by p : the first bunch of terms are zero, and the second bunch are all divisible by p, by the claim.

On the other hand, consider

$$
F(0)=\underbrace{f(0)+f^{\prime}(0)+\cdots+f^{(p-2)}(0)}+f^{(p-1)}(0)+\underbrace{f^{(p)}(0)+\ldots} .
$$

The first bunch of terms are all zero, and the last bunch are all divisible by p, but $f^{(p-1)}(0)=(n!)^{p}$. Since p was chosen to be larger than n, this is not divisible by p.

Also, p was chosen to be larger than c_{0}, and so doesn't divide c_{0}. As a result, p doesn't divide the integer $c_{0} F(0)+c_{1} F(1)+\cdots+c_{n} F(n)$.

Recall from before that $c_{0} F(0)+c_{1} F(1)+c_{2} F(2)+\cdots+c_{n} F(n)=c_{1} \varepsilon_{1}+c_{2} \varepsilon_{2}+\cdots+c_{n} \varepsilon_{n}$. The left side of this equation is a nonnegative integer (since it is not divisible by p). I will show that the right side has absolute value less than 1 , and this will be a contradiction.

Fix i with $1 \leq i \leq n$. From the definition of ε_{i} and the formula for $f(x)$, we see that

$$
\varepsilon_{i}=-i e^{i\left(1-\theta_{i}\right)} f\left(i \theta_{i}\right)=\frac{-i e^{i\left(1-\theta_{i}\right)}\left(i \theta_{i}\right)^{p-1}\left(1-i \theta_{1}\right)^{p} \ldots\left(n-i \theta_{i}\right)^{p}}{(p-1)!} .
$$

Since $0<\theta_{i}<1$, we have

$$
\left|\varepsilon_{i}\right| \leq \frac{e^{n} n^{p}(n!)^{p}}{(p-1)!} .
$$

As p goes to ∞, the right hand side goes to zero, so for p a sufficiently large prime,

$$
\left|c_{1} \varepsilon_{1}+\cdots+c_{n} \varepsilon_{n}\right|<1 .
$$

But $c_{1} \varepsilon_{1}+\cdots+c_{n} \varepsilon_{n}$ must be a nonzero integer. This is the contradiction we were looking for.

