Some solutions for practice problems,
Sections 11.2 and 11.3

11.2.1 (a) \(R[x,y] \) is not a Euclidean domain; in fact, it is not even a principal ideal domain. We do have a notion of degree, and we know that if \(p \) and \(q \) are polynomials and \(p \equiv q \), then the degree of \(p \) is at most the degree of \(q \). Given this, it’s easy to show that \(R[x,y] \) is not a principal ideal domain: the ideal \(\langle x, y \rangle \) generated by \(x \) and \(y \) is not principal. If it were, say with \(I = \langle p(x,y) \rangle \), then we would have \(p|x \) and \(p|y \). The only possibility is for \(p \) to equal 0, in which case \((p) = (0) \), or for \(p \) to be of degree 0, i.e., a constant, in which case \((p) = (1) \).

(b) The ideal \(\langle 2,x \rangle \) is not principal, so \(\mathbb{Z}[x] \) is not a principal ideal domain. Again, if \((2,x) = (p) \), then we would have \(p|2 \), so \(p = \pm 1 \) or \(p = \pm 2 \). If \(p \neq \pm 1 \), then \(p = \pm 2 \), so \(p \) does not divide \(x \).

11.2.11 (a) Assume that \(a \) and \(b \) are associates, so that \(a = bc \) and \(b = ad \) for some \(c,d \). Then we have \(a = bc = ade \); since we are working in an integral domain, we can cancel. So we get \(1 = dc \); hence \(c \) and \(d \) are both units.

The converse is quick: if \(a = bu \) where \(u \) is a unit, then clearly \(b|a \); on the other hand, we have \(au^{-1} = b \), so \(a|b \).

(b) This problem is stated a bit ambiguously. The easier way to interpret it is this: find a ring \(R \) and elements \(a \) and \(b \) of \(R \) so that \(a \) and \(b \) are associates, and there is a nonunit \(r \) so that \(a = br \). Here’s one example: work in \(\mathbb{Z}/10\mathbb{Z} \). The units here are \(1,3,7,9 \). Then \(4 \) and \(8 \) are associates, since \(4 \cdot 2 = 8 \) and \(8 \cdot 8 = 4 \), but I’ve just expressed these elements as being non-unit multiples of each other. They are also unit multiples of each other: \(4 \cdot 7 = 8 \) and \(8 \cdot 3 = 4 \).

This leads to the second interpretation: find a ring \(R \) and elements \(a \) and \(b \) so that \(a \) and \(b \) are associates, but neither one is a unit multiple of the other. Here’s an example of this: let \(R = \mathbb{Z}[x]/(5x) \). Then the units are \(1 \) and \(-1 \). The elements \(x \) and \(2x \) are associates: certainly \(2x \) is a multiple of \(x \); since \(5x = 0 \), then \(x = 6x = 3 \cdot 2x \), so \(x \) is also a multiple of \(2x \). The unit multiples of \(x \) are \(x \) and \(-x = 4x \); the unit multiples of \(2x \) are \(2x \) and \(-2x = 3x \). In particular, neither one is a unit multiple of the other.

11.3.1 Assume \(f(x) \) is irreducible; assume we have \(f(ax+b) = p(x)q(x) \) for some \(p,q \in F[x] \). Make the substitution \(y = ax + b \), i.e., \(x = a^{-1}(y - b) \). Then we have

\[
 f(y) = p(x)q(x) = p(a^{-1}(y - b))q(a^{-1}(y - b)).
\]

In other words, \(f(y) \) factors. So \(p(a^{-1}(y - b)) \) must be a unit (i.e., a constant); hence \(p(x) \) is a constant, so \(f(ax+b) \) has no non-trivial factorization. The converse is proved similarly.