Which polynomials $f(x) \in \mathbf{Q}[x]$ have the property that $f(n)$ is an integer for all integers n ?
(a) For each integer $j \geq 0$, define $p_{j}(x) \in \mathbf{Q}[x]$ by

$$
p_{j}(x)=\frac{x(x-1)(x-2) \ldots(x-j+1)}{j!} .
$$

(When $j=0, p_{0}(x)=1$.) Show that any polynomial in $\mathbf{Q}[x]$ can be written as a rational linear combination of the polynomials $p_{j}(x)$.
(b) Let I be this set of polynomials:

$$
I=\{f(x) \in \mathbf{Q}[x]: f(n) \in \mathbf{Z} \text { for all } n \in \mathbf{Z}\}
$$

Show that $f(x) \in I$ if and only if $f(x)$ is an integer linear combination of the polynomials $p_{j}(x)$. [Hint: if $f(x) \in I$, evaluate $f(x)$ at the integers $0,1, \ldots k$.]
(This is from D'Angelo and West, Mathematical Thinking, 2nd edition, problem 5.65.)

