Much of this (up to and including cofinality) is taken from *Set Theory* by Thomas Jech [Jec03], but you can probably find it in any reasonable set theory book. The rest is from Hovey's book *Model Categories* [Hov99].

1 Well-ordered sets

A linearly ordered set (P, <) is *well-ordered* if every nonempty subset of *P* has a least element. A map *f* of ordered sets is *increasing* if $x \ge y \Rightarrow f(x) \ge f(y)$.

Lemma 1.1. Suppose that (W, <) is well-ordered. If $f : W \to W$ is an increasing function, then $f(x) \ge x$ for all $x \in W$.

Corollary 1.2. The only automorphism of a well-ordered set is the identity.

Corollary 1.3. If W_1 and W_2 are isomorphic well-ordered sets, there is a unique isomorphism between them.

Given a well-ordered set *W* and an element $u \in W$, the *initial segment* given by *u* is $\{x \in W : x < u\}$.

Lemma 1.4. No well-ordered set is isomorphic to an initial segment of itself.

Theorem 1.5. For any well-ordered sets W_1 and W_2 , exactly one of the following holds:

- 1. W_1 is isomorphic to W_2 .
- 2. W_1 is isomorphic to an initial segment of W_2 .
- 3. W_2 is isomorphic to an initial segment of W_1 .

If W_1 and W_2 are isomorphic well-ordered sets, say that they have the same *order type*.

2 Ordinals

A set *T* is *transitive* if every element of *T* is a subset of *T*. (That is, *T* is a subset of its power set.) A set is an *ordinal number* (or an *ordinal*) if it is transitive and well-ordered by \in . For ordinals α and β , define $\alpha < \beta$ if $\alpha \in \beta$.

- $0 = \emptyset$ is an ordinal.
- If α is an ordinal and $\beta \in \alpha$, then β is an ordinal.
- If α and β are distinct ordinals and $\alpha \subset \beta$, then $\alpha \in \beta$.
- If α and β are ordinals, then either $\alpha \subset \beta$ or $\beta \subset \alpha$.

The class of ordinals, Ord, has these properties:

• Ord is linearly ordered by <.

- For each $\alpha \in \text{Ord}$, $\alpha = \{\beta : \beta < \alpha\}$.
- For each α , $\alpha \cup \{\alpha\}$ is an ordinal, and $\alpha \cup \{\alpha\} = \inf\{\beta : \beta > \alpha\}$.

So define $\alpha + 1$ to be $\alpha \cup \{\alpha\}$; this is called the *successor* to α . If $\alpha = \beta + 1$ for some β , then α is called a *successor ordinal*. If α is not a successor ordinal, then $\alpha = \sup\{\beta : \beta < \alpha\}$, and α is called a *limit ordinal*.

Theorem 2.1. Every well-ordered set is isomorphic to a unique ordinal number.

Let β be a limit ordinal. A β -sequence is a function whose domain is β :

$$\langle a_{\xi}: \xi < \beta \rangle.$$

If $\langle \alpha_{\xi} : \xi < \beta \rangle$ is a *nondecreasing* sequence of ordinals (so $\xi < \eta$ implies $\alpha_{\xi} < \alpha_{\eta}$), then the *limit* of the sequence is

$$\lim_{\xi\to\beta}\alpha_\xi=\sup\{\alpha_\xi:\xi<\beta\}.$$

Examples of ordinals:

$$0 = \{\}$$

$$1 = \{0\}$$

$$2 = \{0, 1\}$$

$$3 = \{0, 1, 2\}$$

$$\vdots$$

$$\omega = \{0, 1, 2, \dots\}$$

$$\omega + 1 = \{0, 1, 2, \dots; \omega\}$$

$$\vdots$$

3 Cardinals

An ordinal α is a *cardinal number* if $|\alpha| \neq |\beta|$ for all $\beta < \alpha$.

If W is well-ordered, there is an ordinal α such that $|W| = |\alpha|$, so let |W| denote the least ordinal α such that $|W| = |\alpha|$. (By the axiom of choice, every set can be well-ordered, so we can extend this notation to any set W.)

Note: all infinite cardinals are limit ordinals.

4 Cofinality and κ-filtered ordinals

Let $\alpha > 0$ be a limit ordinal. An increasing β -sequence $\langle \alpha_{\xi} : \xi < \beta \rangle$, for β a limit ordinal, is *cofinal* in α if $\lim_{\xi \to \beta} \alpha_{\xi} = \alpha$. Similarly, $A \subset \alpha$ is *cofinal* in α if $\sup A = \alpha$.

For α an infinite limit ordinal, let $cf\alpha$ be the least limit ordinal β such that there is an increasing β -sequence $\langle \alpha_{\xi} : \xi < \beta \rangle$ with $\lim_{\xi \to \beta} \alpha_{\xi} = \alpha$; this is called the *cofinality* of α . Note that $cf\alpha \leq \alpha$ always.

From [Hov99, Section 2.1]: given a cardinal κ , an ordinal α is κ -*filtered* if it is a limit ordinal and, if $A \subseteq \alpha$ and $|A| \leq \kappa$, then sup $A < \alpha$. This holds if and only if the cofinality of α is greater than κ .

For example, if κ is finite, then a κ -filtered ordinal is just an infinite limit ordinal. If κ is infinite, the smallest κ -filtered ordinal is the first cardinal κ_1 larger than κ .

5 Smallness

(This material is taken from [Hov99, Section 2.1].)

Suppose that C is a category with all small colimits, \mathcal{D} is a collection of morphisms of C, A is an object of C and κ is a cardinal. We say that A is κ -small relative to \mathcal{D} if, for all κ -filtered ordinals λ and all λ -sequences

$$X_0 \to X_1 \to \cdots \to X_\beta \to \cdots,$$

such that each map $X_{\beta} \to X_{\beta+1}$ is in \mathcal{D} , the map of sets

$$\operatorname{colim}_{\beta<\lambda} \mathcal{C}(A, X_{\beta}) \to \mathcal{C}(A, \operatorname{colim}_{\beta<\lambda} X_{\beta})$$

is an isomorphism. We say that *A* is *small relative to* \mathcal{D} if it is κ -small for some κ . We say that *A* is *small* if it is small relative to the whole category *C*. We say that *A* is *finite relative to* \mathcal{D} if it is κ -small relative to \mathcal{D} for some finite cardinal κ , and similarly, *A* is *finite* if it is finite relative to *C*. Finite means that maps from *A* commute with colimits of arbitrary λ -sequences, for any limit ordinal λ .

Examples:

- In the category of sets, every set is small. The finite sets (in the usual sense) are precisely the sets that are finite according to the above definition.
- In the category of *R*-modules, every module is small. Every finitely presented *R*-module is finite.
- In the category of topological spaces, the set {0,1} with the indiscrete topology is not small.

References

- [Hov99] M. Hovey, *Model categories*, American Mathematical Society, Providence, RI, 1999.
- [Jec03] Thomas Jech, *Set theory*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, The third millennium edition, revised and expanded.