Theorem. Let *R* be a principal ideal domain. Every submodule of a free *R*-module is free.

Proof. This proof uses the well-ordering principle: for every set J, there is an ordering < on J with respect to which J is well-ordered. (An ordered set is *well-ordered* if every nonempty subset has a minimal element. With the usual ordering, the set of non-negative integers is well-ordered, but \mathbf{Z} , \mathbf{Q} , and \mathbf{R} are not.) The well-ordering principle is equivalent to the axiom of choice.

This proof is from A Course in Homological Algebra by Hilton and Stammbach.

Let $F = \bigoplus_{j \in J} R_j$ be a free module, indexed by the set *J*. Here $R_j = R$ for all *j*: the subscript is merely to indicate which summand it is. Let $M \subseteq F$ be a submodule. Assume that *J* is well-ordered.

For $j \in J$, let

$$\overline{F}_{(j)} = \bigoplus_{i < j} R_i, \qquad F_{(j)} = \bigoplus_{i \leq j} R_i = \overline{F}_{(j)} \oplus R_j.$$

Because of the direct sum decomposition $F_{(j)} = \overline{F}_{(j)} \oplus R_j$, every element in $F_{(j)} \cap M$ may be written uniquely as (b, r), where $b \in \overline{F}_{(j)}$ and $r \in R_j = R$. Define a map f_j by

$$f_j: F_{(j)} \cap M \longrightarrow R,$$
$$(b,r) \longmapsto r.$$

Then the kernel of f_j is $\overline{F}_{(j)} \cap M$, so there is a short exact sequence

$$0 \to \overline{F}_{(j)} \cap M \to F_{(j)} \cap M \to \operatorname{im} f_j \to 0.$$

im f_j is an ideal in R, and since R is a PID, im $f_j = (r_j)$ for some $r_j \in R$. If $r_j \neq 0$, there is an element $c_j \in F_{(j)} \cap M$ so that $f_j(c_j) = r_j$.

Claim: $\{c_j : j \in J, r_j \neq 0\}$ is a basis for *M*.

I'll check that the elements of this set are linearly independent. Suppose that $\sum_{k=1}^{n} s_k c_{j_k} = 0$ for some elements $s_k \in R$, with $j_1 < \cdots < j_n$. Apply f_{j_n} :

$$0 = s_n f(c_{j_n}) = s_n r_n,$$

and since R is a domain and r_n is nonzero, then s_n must be zero. By induction, each s_k is zero. This proves linear independence.

Now I'll check that this set generates M. Assume not: then there is a smallest $i \in J$ such that there is an element $a \in F_{(i)} \cap M$ which cannot be written in terms of the elements of the set $\{c_j\}$.

Let $J' = \{j \in J : r_j \neq 0\}$ (so our potential basis is $\{c_j : j \in J'\}$). If $i \notin J'$, then the map

$$\overline{F}_{(i)} \cap M \to F_{(i)} \cap M$$

is equality, so $a \in \overline{F}_{(i)} \cap M$. But then there is a k < i in J so that $a \in F_{(k)} \cap M$, contradicting the minimality of i. Thus $i \in J'$.

Write $f_i(a)$ as $f_i(a) = sr_i$ and form $b = a - sc_i$. Since *a* cannot be written as an *R*-linear combination of the c_i 's, neither can *b*. Also,

$$f_i(b) = f_i(a) - sf_i(c_i) = 0,$$

so $b \in \overline{F}_{(i)} \cap M$. This contradicts the minimality of the index *i*, and so every element of *M* can be expressed as a linear combination of the c_i 's.