Theorem. Let R be a principal ideal domain. Every submodule of a free R-module is free.

Proof. This proof uses the well-ordering principle: for every set J, there is an ordering $<$ on J with respect to which J is well-ordered. (An ordered set is well-ordered if every nonempty subset has a minimal element. With the usual ordering, the set of nonnegative integers is well-ordered, but \mathbf{Z}, \mathbf{Q}, and \mathbf{R} are not.) The well-ordering principle is equivalent to the axiom of choice.

This proof is from A Course in Homological Algebra by Hilton and Stammbach.
Let $F=\bigoplus_{j \in J} R_{j}$ be a free module, indexed by the set J. Here $R_{j}=R$ for all j : the subscript is merely to indicate which summand it is. Let $M \subseteq F$ be a submodule. Assume that J is well-ordered.

For $j \in J$, let

$$
\bar{F}_{(j)}=\bigoplus_{i<j} R_{i}, \quad F_{(j)}=\bigoplus_{i \leq j} R_{i}=\bar{F}_{(j)} \oplus R_{j} .
$$

Because of the direct sum decomposition $F_{(j)}=\bar{F}_{(j)} \oplus R_{j}$, every element in $F_{(j)} \cap M$ may be written uniquely as (b, r), where $b \in \bar{F}_{(j)}$ and $r \in R_{j}=R$. Define a map f_{j} by

$$
\begin{aligned}
f_{j}: F_{(j)} \cap M & \longrightarrow R, \\
(b, r) & \longmapsto r .
\end{aligned}
$$

Then the kernel of f_{j} is $\bar{F}_{(j)} \cap M$, so there is a short exact sequence

$$
0 \rightarrow \bar{F}_{(j)} \cap M \rightarrow F_{(j)} \cap M \rightarrow \operatorname{im} f_{j} \rightarrow 0
$$

$\operatorname{im} f_{j}$ is an ideal in R, and since R is a PID, $\operatorname{im} f_{j}=\left(r_{j}\right)$ for some $r_{j} \in R$. If $r_{j} \neq 0$, there is an element $c_{j} \in F_{(j)} \cap M$ so that $f_{j}\left(c_{j}\right)=r_{j}$.

Claim: $\left\{c_{j}: j \in J, r_{j} \neq 0\right\}$ is a basis for M.
I'll check that the elements of this set are linearly independent. Suppose that $\sum_{k=1}^{n} s_{k} c_{j_{k}}=0$ for some elements $s_{k} \in R$, with $j_{1}<\cdots<j_{n}$. Apply $f_{j_{n}}$:

$$
0=s_{n} f\left(c_{j_{n}}\right)=s_{n} r_{n}
$$

and since R is a domain and r_{n} is nonzero, then s_{n} must be zero. By induction, each s_{k} is zero. This proves linear independence.

Now I'll check that this set generates M. Assume not: then there is a smallest $i \in J$ such that there is an element $a \in F_{(i)} \cap M$ which cannot be written in terms of the elements of the set $\left\{c_{j}\right\}$.

Let $J^{\prime}=\left\{j \in J: r_{j} \neq 0\right\}$ (so our potential basis is $\left\{c_{j}: j \in J^{\prime}\right\}$). If $i \notin J^{\prime}$, then the map

$$
\bar{F}_{(i)} \cap M \rightarrow F_{(i)} \cap M
$$

is equality, so $a \in \bar{F}_{(i)} \cap M$. But then there is a $k<i$ in J so that $a \in F_{(k)} \cap M$, contradicting the minimality of i. Thus $i \in J^{\prime}$.

Write $f_{i}(a)$ as $f_{i}(a)=s r_{i}$ and form $b=a-s c_{i}$. Since a cannot be written as an R-linear combination of the c_{j} 's, neither can b. Also,

$$
f_{i}(b)=f_{i}(a)-s f_{i}\left(c_{i}\right)=0,
$$

so $b \in \bar{F}_{(i)} \cap M$. This contradicts the minimality of the index i, and so every element of M can be expressed as a linear combination of the c_{j} 's.

