Mathematics 506  Spring 2004

1. Letk be a field. Prove that the rinkj[x]] of formal power series with coefficients kis
Noetherian.

Solution (10 points) First, note that you can prove the more general statemeiR|tkais
Noetherian ifR is, but the argument simplifies considerably if you use the fact that you're
working with field coefficients. So | decided not to give full credit if you ignored the fact that
you were working with a field.

Let | be an ideal irk[[x]]. | want to show that is finitely generated. We may assume that
is nonzero. Let be the largest number so thét divides every element df equivalently,
if 1 define thecodegreeof a power series (x) = ¥ ax to be the index of the first nonzero
coefficient, therd is the minimum of the codegrees of the elementk of

Sincexd divides every element df | C (xd). | claim that these ideals are actually equal. By
assumption, there is a power serfdg) in | with codegrea: there is a power series

f(x) = aax’ +ag X"t +ag X2

in | for some elements; € k, whereay # 0.

Given any power series ifx), which is to say any power series with codegree at ldast
want to show that it is ih. 1 will show that it is a multiple off (x). So fix

9(X) = CnX"+ CnsaX T CnaoXny2 + -
wherec; € kandn > d. | want to find a power series
h(x) = by + bix+ bpx% + - --

so thatg(x) = f(x)h(x). Comparing coefficients in this purported equality, | want to be able to
find elementd; € k so that for eaclm > 0,

Cm= Y aibj=aybmd+ad+1bm-g-1+--- +am-101+ ambo.

i+]=m
i>d
I will find b; inductively. Letbp =0=b; =--- =Db,_q_1. Then form< n,
tm=0= 2 aibj.
i+J=m
i>d

Letb, 4 = aglcn. Thency = agbn_q = 5 ajbj. Now assume that | have found coefficiehis
for i < m—d giving the above equality fot, ..., Ccn-1. Givenby, ...,bn_gq_1, can | find
bm_q SO that

Cm = @dbm—d +ad+1bm—d—1+ -+ am-1b1 +ambo?
Yes, just solve this equation fdx,, 4 — this is possible becausg is nonzero, and hence a
unit.

This shows that = (x4), and so is finitely generated.
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2. Letk be an algebraically closed field.

(a) LetY be the plane curvg= x? overk —that is,Y = {(x,y) € A%:y—x? = 0}. Show that
its coordinate rin&[Y] = k[A?]/I(Y) is isomorphic to a polynomial ring in one variable
overk.
Solution (5 points) First, I'll point out that both parts of this problem come from Hartshorne’s
Algebraic Geometry- it's the first exercise in section I.1.

| think the quickest way to do this one is as follows: define functibnsA! — Y and
g:Y — Al by f(a) = (a,a®) andg(x,y) = x. These are both defined by polynomials, and
hence are morphisms. They are also inverses to each other, and so define an isomorphism
of algebraic sets, and thus induce an isomorphism on coordinate ki#gs:= k[Z 5
KIY].

Alternatively, one can show thatY) = (y—x?), and use this to show directly thigY] =
k[x]. Let us assume for now thdtY) is equal to(y — x?). Then the coordinate ring
is K[Y] = k[x,y]/(y — x?). Define a mapp: k[x,y] — K[z by @(x) = Z%, @(y) = z This
map is onto and | claim it has kerngt— x?). Clearlyy — x? is in the kernel, and hence
(y—x?) C ker@. On the other hand, giveh e kerg, thenf vanishes at all points of the
zero set of the idealy — x?), so by the Nullstellensatz, some powerfofs in (y — x?).
Sincek(x,y] is a unique factorization domain, this means thatx? divides f. Thus@
induces an isomorphism

kX, Y]/(y—x%) — k(2.

Now, to show thatl(Y) = (y —x?), if f(x,y) € I(Y), thenf(x,x?) =0, sof is in the
kernel of the magp, and sof is in (y—x?). Clearly(y —x?) C 1(Y).

(b) LetZ be the plane curvey= 1. Show thak[Z] is not isomorphic to a polynomial ring in
one variable ovek. (ThereforeY andZ are not isomorphic as algebraic sets.)
Solution (5 points) Note first thatxy— 1) C 1(Z), and so in the ringg[Z] = k[x,y]/ I(Z),
(the residue classes ofjlandy are both units. Also, any ring map

- k[Z] — K]

is determined by where it sendgandy, and these elements must go to unitk[tf, which

means that they must go to constant polynomials (by an easy degree argument, or just see
Proposition 4 in section 7.2). Thus any ring mavill send bothx andy to constants,

and so be neither onto nor one-to-one.

(One can show, without too much work, th&iZ) is actually equal tgxy— 1), and also
thatk[x,y]/(xy— 1) = k[x,x 1], but you don't need to do that for this problem.)
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3. LetG be a finite group, and le& be an abelian group with trividb-action. Indeed, assume
that all groups which appear in this problem as coefficients have a @Gvéation.
(@) Show thatH%(G,A) = A,
Solution (1 point) This follows from Example (1) on p. 766 of the book:Gfacts
trivially on A, thenA® = A, and by the examplé§%(G, A) = AC.
(b) Show thatH!(G,A) = Homyroupd G, A), the set of group homomorphisms fragnto A.
Hence ifZ is the integers an@ is the complex numbers, théh'(G,Z) = 0=HY(G,C).

Solution (4 points) This is actually Proposition 30 in section 17.3, which we didn’t do

in class, and also wasn't assigned in the reading. We can solve this problem by using the
cochain comple€" = C"(G, A) defined in the bookC? = A, Ct = Map(G, A) is the set of

all functions fromG to A (not just the group homomorphisms), &dti= Map(G x G, A)

is the set of all functions fronG x G to A. The boundary maps are given in equation
(17.18):

do : A— Map(G,A)
a—g-a—a

and sincé\is a trivial G-module,g-a= a, and sadp = 0: dp(a) is the mapG — A sending
every group element to O.

d; : Map(G,A) — Map(G x G,A)
fe— ((91,92) = g1~ F(92) — f(9192) + (1)),

and sincéA is a trivial module,f gets sent to the map sendifmy,g2) € Gx Gto

f(91) + f(92) — (9192).

The group of cocycles in degree 1 is the kernetlgfwhich is to say all functions :
G — Asatisfying
f(g1) + f(g2) — f(9192) =0

for all 91,02 € G. That is, the group of cocycles is precisely the set of group homomor-
phisms fromG to A. The group of coboundaries is the zero group, and so the cohomology
is as desired, Hogoupd G, A).

If Ais an abelian group in which no nonzero element has finite order, then the only group
homomorphism fron® to Ais the zero map. This is the case whea Z or whenA=C.

(c) Show thaH?(G,C) = 0.
Solution (2 points.) There are several possible approaches. According to a result in the
book, if |G| = m, thenmH"(G, C) for alln > 1. | claim thatH"(G, C) is a complex vector
space for everyn > 0, which would then imply thati"(G,C) = 0 for alln > 1. An out-
line for verifying this claim: the groupS8"(G, A) used to compute group cohomology get
their group structure entirely from. The same goes for showing that the boundary maps
are group homomorphisms. In this case, scalar multiplicatiof amkesC"(G,C) into
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a complex vector space, and the boundary maps respect this, and so are linear transfor-
mations. Thus the kernels and images of the boundary maps are vector spaces, and thus
the cohomology groups are.
Another approach: | claim that for amy> 0, H"(G,C) = Ext;5(Z, C) is isomorphic to
Extt;(C,C). The latter group is zero whem> 0, because of Maschke’s theorem: since
the characteristic of does not divide the order &, everyCG-module is injective, and
so Ext' is zero whem > 0.
To verify the claim: let

=P —->Ph—>Z—-0

be a resolution oZ by free ZG-modules: for each, P is isomorphic to a direct sum

of copies ofZG. (The authors construct such a resolution in section 17.2, and | also
described how to do it in class.) Theil'(G,C) is the nth cohomology group of the
cochain complex

-+« Homzg(P1,C) « Homzg(Py,C) < 0.

Note, by the way, that i? is freely generated by a sgtthen Homg(P,,C) = Homsetd S, C).
Now, C is flat as aZ-module, so applyin@ ®z — to the above resolution gives an exact
sequence

= CePL—-Ce®Ph—C®Z—0.

Furthermore, since eaéhis a direct sum of copies &G, C® B is a direct sum of copies
of CG. Note also thaC ® Z = C, so this is a resolution d€ by freeCG-modules. Thus
Extgg(C,C) is thenth cohomology group of the cochain complex

o+ —Homeg(C® Py, C) «— Homeg(C® Py, C) «— 0.

Note that ifR, is freely generated asz(G-module by a se§, thenC ® R is freely gener-
ated as £G-module by the same set, and so

Homzg(R,C) = Homgetd S C) = Homeg(C® R, C).

So the groups making up these two cochain complexes are the same. One can also verify
that the maps are the same, and thus their cohomology groups are the same, as claimed.

(d) Use the short exact sequence
0—-Z2—-C—C/Z2—-0

to conclude thaH?(G, Z) = Homgroupd G, C*), the set of one-dimensional complex rep-
resentations o6.

Solution (3 points) This problem was modeled on exercise 6.1.6 in Welrelntroduc-
tion to Homological Algebra

The short exact sequence yields a long exact sequence in cohomology, a portion of which
is
H(G,C) — HY(G,C/Z) — H?*G,Z) — H?(G,C).
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By the previous two part$j1(G,C) = 0= H?(G,C), so by exactness,
H(G,C/Z) 2 H?(G,Z).
By part (b), | can rewrite the left side as
H(G,C/Z) = Homyroupd G,C/2),

so it suffices to show that there is a group isomorph@Z = C*. Define a mapp:
C — C* by @(2) = €™. This is a group map, it's onto, and its kernel is the subgroup of
integers inC.

4. LetG be a finite groupk an algebraically closed field, aMdan irreduciblek-linear represen-
tation of G. Show that Homg(V,V) is isomorphic tdk, as rings.

Solution (5 points) (This problem is Dummit & Foote, problem 16 in section 18.2.)

SinceV is a simplekG-module, then by Schur’s lemma (Lemma 7 in section 18.2), ki V)

is a division ring; I'll call it A. 1 would like to use Proposition 9 in section 18.2 to conclude that
A is isomorphic tdk, and to do this, | have to show thatis finite-dimensional as kvector
space, and thatis contained in the center &f.

First of all, sinceV is irreducible, thelv must be finite-dimensional: given ary V, there is
akG-module map
kG—V

sending 1 tax. SincekG is finite-dimensional, the image of this map is a finite-dimensional
submodule containing. SinceV is irreducible, ifx is nonzero, this submodule must be all of
X, and thusV is finite-dimensional. (Indeed, the dimension\bfs at most the dimension of
kG.)

So the space of linear transformations HO¥V ) is finite-dimensional, and Hogg(V,V) is
a sub-vector space of it, and so is also finite-dimensional.

Next, for anya € k, the linear transformation determined by the madriXa times the identity
matrix) is the same as scalar multiplication ®yand so is central ih. This map is also a
kG-module map: for ang € G andv € V, g(av) = a(gv). Thus the magx — A, sendinga to
al, mapsk injectively to the center oA.

Now apply Proposition 9 of section 18.2 to yield the result.

Alternatively, argue as above to show thais finite-dimensional. For ankG-module map
f:V —V, view f as a linear transformation and find an eigenvaiyehen f —al is in
Homyg(V,V), and s singular (since is an eigenvalue). Thus it must be zero, since givi,V)
is a division ring, sof = al. This is true for anyf € Homyg(V,V); thus Homg(V,V) = k.
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5. Show that every element of a finite gro@is conjugate to its inverse if and only if every
character orG is real-valued. (Here, by “character” | mean complex character, and “real-
valued” means that(g) is real for every characterand for everyg € G.)

Solution (5 points) (This problem was taken from an as yet unpublished book by Peter Webb,
from the University of Minnesota.)

My main tool will be Proposition 14 in section 18.3: for any charagtef G and anyg € G,

X(97) =x(9).

If every character is real-valued, then for any charagtand anyg € G, x(g~1) = Xx(9), by
Proposition 14. Since the irreducible characters form a basis for the class functions (statement
(18.10)), then for every class functidn f(g) = f(g~%). If g andg—! were not conjugate, |

could define a class function which had the value g@nd the value 0 og~—?; since there

is no such class functioy, must be conjugate tg~*. (Alternatively, you can use the second
orthogonality relation for this part.)

Conversely, ifg is conjugate tay 1 for all g, then for any charactey, X(9) = X(g71) sincey
is a class function, and on the other hid) = x(g~1) by Proposition 14. Combining these,

| find thatx(g) = x(g) for all g € G, which means that(qg) is real for allg € G.
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