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1. Let k be a field. Prove that the ringk[[x]] of formal power series with coefficients ink is
Noetherian.

Solution. (10 points) First, note that you can prove the more general statement thatR[[x]] is
Noetherian ifR is, but the argument simplifies considerably if you use the fact that you’re
working with field coefficients. So I decided not to give full credit if you ignored the fact that
you were working with a field.

Let I be an ideal ink[[x]]. I want to show thatI is finitely generated. We may assume thatI
is nonzero. Letd be the largest number so thatxd divides every element ofI ; equivalently,
if I define thecodegreeof a power seriesf (x) = ∑aixi to be the index of the first nonzero
coefficient, thend is the minimum of the codegrees of the elements ofI .

Sincexd divides every element ofI , I ⊆ (xd). I claim that these ideals are actually equal. By
assumption, there is a power seriesf (x) in I with codegreed: there is a power series

f (x) = adxd +ad+1xd+1 +ad+2xd+2 + · · ·

in I for some elementsai ∈ k, wheread 6= 0.

Given any power series in(xd), which is to say any power series with codegree at leastd, I
want to show that it is inI . I will show that it is a multiple off (x). So fix

g(x) = cnxn +cn+1xn+1 +cn+2xn+2 + · · ·

whereci ∈ k andn≥ d. I want to find a power series

h(x) = b0 +b1x+b2x2 + · · ·

so thatg(x) = f (x)h(x). Comparing coefficients in this purported equality, I want to be able to
find elementsbi ∈ k so that for eachm≥ 0,

cm = ∑
i+ j=m

i≥d

aib j = adbm−d +ad+1bm−d−1 + · · ·+am−1b1 +amb0.

I will find bi inductively. Letb0 = 0 = b1 = · · ·= bn−d−1. Then form< n,

cm = 0 = ∑
i+ j=m

i≥d

aib j .

Let bn−d = a−1
d cn. Thencn = adbn−d = ∑aib j . Now assume that I have found coefficientsbi

for i < m−d giving the above equality forc0, . . . , cm−1. Givenb0, . . . , bm−d−1, can I find
bm−d so that

cm = adbm−d +ad+1bm−d−1 + · · ·+am−1b1 +amb0?

Yes, just solve this equation forbm−d – this is possible becausead is nonzero, and hence a
unit.

This shows thatI = (xd), and so is finitely generated.
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2. Letk be an algebraically closed field.

(a) LetY be the plane curvey = x2 overk – that is,Y = {(x,y) ∈ A2 : y−x2 = 0}. Show that
its coordinate ringk[Y] = k[A2]/I (Y) is isomorphic to a polynomial ring in one variable
overk.

Solution. (5 points) First, I’ll point out that both parts of this problem come from Hartshorne’s
Algebraic Geometry– it’s the first exercise in section I.1.

I think the quickest way to do this one is as follows: define functionsf : A1→ Y and
g : Y→ A1 by f (a) = (a,a2) andg(x,y) = x. These are both defined by polynomials, and
hence are morphisms. They are also inverses to each other, and so define an isomorphism

of algebraic sets, and thus induce an isomorphism on coordinate rings:k[A1] = k[z]
∼=−→

k[Y].
Alternatively, one can show thatI (Y) = (y−x2), and use this to show directly thatk[Y]∼=
k[x]. Let us assume for now thatI (Y) is equal to(y− x2). Then the coordinate ring
is k[Y] = k[x,y]/(y− x2). Define a mapφ : k[x,y]→ k[z] by φ(x) = z2, φ(y) = z. This
map is onto and I claim it has kernel(y− x2). Clearlyy− x2 is in the kernel, and hence
(y− x2) ⊆ kerφ. On the other hand, givenf ∈ kerφ, then f vanishes at all points of the
zero set of the ideal(y− x2), so by the Nullstellensatz, some power off is in (y− x2).
Sincek[x,y] is a unique factorization domain, this means thaty− x2 divides f . Thusφ
induces an isomorphism

k[x,y]/(y−x2)→ k[z].

Now, to show thatI (Y) = (y− x2), if f (x,y) ∈ I (Y), then f (x,x2) = 0, so f is in the
kernel of the mapφ, and sof is in (y−x2). Clearly(y−x2)⊆ I (Y).

(b) LetZ be the plane curvexy= 1. Show thatk[Z] is not isomorphic to a polynomial ring in
one variable overk. (ThereforeY andZ are not isomorphic as algebraic sets.)

Solution. (5 points) Note first that(xy−1)⊆ I (Z), and so in the ringk[Z] = k[x,y]/I (Z),
(the residue classes of)x andy are both units. Also, any ring map

ψ : k[Z]→ k[t]

is determined by where it sendsx andy, and these elements must go to units ink[t], which
means that they must go to constant polynomials (by an easy degree argument, or just see
Proposition 4 in section 7.2). Thus any ring mapψ will send bothx andy to constants,
and so be neither onto nor one-to-one.

(One can show, without too much work, thatI (Z) is actually equal to(xy−1), and also
thatk[x,y]/(xy−1)∼= k[x,x−1], but you don’t need to do that for this problem.)
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3. Let G be a finite group, and letA be an abelian group with trivialG-action. Indeed, assume
that all groups which appear in this problem as coefficients have a trivialG-action.

(a) Show thatH0(G,A)∼= A.

Solution. (1 point) This follows from Example (1) on p. 766 of the book: ifG acts
trivially on A, thenAG = A, and by the example,H0(G,A) = AG.

(b) Show thatH1(G,A) ∼= Homgroups(G,A), the set of group homomorphisms fromG to A.
Hence ifZ is the integers andC is the complex numbers, thenH1(G,Z) = 0= H1(G,C).
Solution. (4 points) This is actually Proposition 30 in section 17.3, which we didn’t do
in class, and also wasn’t assigned in the reading. We can solve this problem by using the
cochain complexCn =Cn(G,A) defined in the book:C0 = A,C1 = Map(G,A) is the set of
all functions fromG to A (not just the group homomorphisms), andC2 = Map(G×G,A)
is the set of all functions fromG×G to A. The boundary maps are given in equation
(17.18):

d0 : A−→Map(G,A)
a 7−→ g·a−a

and sinceA is a trivialG-module,g·a= a, and sod0 = 0: d0(a) is the mapG→A sending
every group element to 0.

d1 : Map(G,A)−→Map(G×G,A)

f 7−→
(
(g1,g2) 7→ g1 · f (g2)− f (g1g2)+ f (g1)

)
,

and sinceA is a trivial module,f gets sent to the map sending(g1,g2) ∈G×G to

f (g1)+ f (g2)− f (g1g2).

The group of cocycles in degree 1 is the kernel ofd1, which is to say all functionsf :
G→ A satisfying

f (g1)+ f (g2)− f (g1g2) = 0

for all g1,g2 ∈ G. That is, the group of cocycles is precisely the set of group homomor-
phisms fromG to A. The group of coboundaries is the zero group, and so the cohomology
is as desired, Homgroups(G,A).
If A is an abelian group in which no nonzero element has finite order, then the only group
homomorphism fromG to A is the zero map. This is the case whenA= Z or whenA= C.

(c) Show thatH2(G,C) = 0.

Solution. (2 points.) There are several possible approaches. According to a result in the
book, if |G|= m, thenmHn(G,C) for all n≥ 1. I claim thatHn(G,C) is a complex vector
space for everyn≥ 0, which would then imply thatHn(G,C) = 0 for all n≥ 1. An out-
line for verifying this claim: the groupsCn(G,A) used to compute group cohomology get
their group structure entirely fromA. The same goes for showing that the boundary maps
are group homomorphisms. In this case, scalar multiplication onC makesCn(G,C) into
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a complex vector space, and the boundary maps respect this, and so are linear transfor-
mations. Thus the kernels and images of the boundary maps are vector spaces, and thus
the cohomology groups are.

Another approach: I claim that for anyn≥ 0, Hn(G,C) = ExtnZG(Z,C) is isomorphic to
ExtnCG(C,C). The latter group is zero whenn > 0, because of Maschke’s theorem: since
the characteristic ofC does not divide the order ofG, everyCG-module is injective, and
so Extn is zero whenn > 0.

To verify the claim: let
· · · → P1→ P0→ Z→ 0

be a resolution ofZ by freeZG-modules: for eachi, Pi is isomorphic to a direct sum
of copies ofZG. (The authors construct such a resolution in section 17.2, and I also
described how to do it in class.) ThenHn(G,C) is the nth cohomology group of the
cochain complex

· · · ← HomZG(P1,C)← HomZG(P0,C)← 0.

Note, by the way, that ifPi is freely generated by a setS, then HomZG(Pi ,C)∼= Homsets(S,C).
Now, C is flat as aZ-module, so applyingC⊗Z− to the above resolution gives an exact
sequence

· · · → C⊗P1→ C⊗P0→ C⊗Z→ 0.

Furthermore, since eachPi is a direct sum of copies ofZG, C⊗Pi is a direct sum of copies
of CG. Note also thatC⊗Z ∼= C, so this is a resolution ofC by freeCG-modules. Thus
ExtnCG(C,C) is thenth cohomology group of the cochain complex

· · · ← HomCG(C⊗P1,C)← HomCG(C⊗P0,C)← 0.

Note that ifPi is freely generated as aZG-module by a setS, thenC⊗Pi is freely gener-
ated as aCG-module by the same set, and so

HomZG(Pi ,C)∼= Homsets(S,C) = HomCG(C⊗Pi ,C).

So the groups making up these two cochain complexes are the same. One can also verify
that the maps are the same, and thus their cohomology groups are the same, as claimed.

(d) Use the short exact sequence

0→ Z→ C→ C/Z→ 0

to conclude thatH2(G,Z)∼= Homgroups(G,C×), the set of one-dimensional complex rep-
resentations ofG.

Solution. (3 points) This problem was modeled on exercise 6.1.6 in Weibel,An Introduc-
tion to Homological Algebra.

The short exact sequence yields a long exact sequence in cohomology, a portion of which
is

H1(G,C)→ H1(G,C/Z)→ H2(G,Z)→ H2(G,C).
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By the previous two parts,H1(G,C) = 0 = H2(G,C), so by exactness,

H1(G,C/Z)∼= H2(G,Z).

By part (b), I can rewrite the left side as

H1(G,C/Z)∼= Homgroups(G,C/Z),

so it suffices to show that there is a group isomorphismC/Z ∼= C×. Define a mapφ :
C→ C× by φ(z) = e2πiz. This is a group map, it’s onto, and its kernel is the subgroup of
integers inC.

4. LetG be a finite group,k an algebraically closed field, andV an irreduciblek-linear represen-
tation ofG. Show that HomkG(V,V) is isomorphic tok, as rings.

Solution. (5 points) (This problem is Dummit & Foote, problem 16 in section 18.2.)

SinceV is a simplekG-module, then by Schur’s lemma (Lemma 7 in section 18.2), HomkG(V,V)
is a division ring; I’ll call it ∆. I would like to use Proposition 9 in section 18.2 to conclude that
∆ is isomorphic tok, and to do this, I have to show that∆ is finite-dimensional as ak-vector
space, and thatk is contained in the center of∆.

First of all, sinceV is irreducible, thenV must be finite-dimensional: given anyx∈V, there is
akG-module map

kG→V

sending 1 tox. SincekG is finite-dimensional, the image of this map is a finite-dimensional
submodule containingx. SinceV is irreducible, ifx is nonzero, this submodule must be all of
x, and thusV is finite-dimensional. (Indeed, the dimension ofV is at most the dimension of
kG.)

So the space of linear transformations Homk(V,V) is finite-dimensional, and HomkG(V,V) is
a sub-vector space of it, and so is also finite-dimensional.

Next, for anyα∈ k, the linear transformation determined by the matrixαI (α times the identity
matrix) is the same as scalar multiplication byα, and so is central in∆. This map is also a
kG-module map: for anyg∈G andv∈V, g(αv) = α(gv). Thus the mapk→ ∆, sendingα to
αI , mapsk injectively to the center of∆.

Now apply Proposition 9 of section 18.2 to yield the result.

Alternatively, argue as above to show thatV is finite-dimensional. For anykG-module map
f : V → V, view f as a linear transformation and find an eigenvalueα; then f −αI is in
HomkG(V,V), and is singular (sinceα is an eigenvalue). Thus it must be zero, since HomkG(V,V)
is a division ring, sof = αI . This is true for anyf ∈ HomkG(V,V); thus HomkG(V,V)∼= k.
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5. Show that every element of a finite groupG is conjugate to its inverse if and only if every
character onG is real-valued. (Here, by “character” I mean complex character, and “real-
valued” means thatχ(g) is real for every characterχ and for everyg∈G.)

Solution. (5 points) (This problem was taken from an as yet unpublished book by Peter Webb,
from the University of Minnesota.)

My main tool will be Proposition 14 in section 18.3: for any characterχ of G and anyg∈G,
χ(g−1) = χ(g).

If every character is real-valued, then for any characterχ and anyg∈ G, χ(g−1) = χ(g), by
Proposition 14. Since the irreducible characters form a basis for the class functions (statement
(18.10)), then for every class functionf , f (g) = f (g−1). If g andg−1 were not conjugate, I
could define a class function which had the value 1 ong and the value 0 ong−1; since there
is no such class function,g must be conjugate tog−1. (Alternatively, you can use the second
orthogonality relation for this part.)

Conversely, ifg is conjugate tog−1 for all g, then for any characterχ, χ(g) = χ(g−1) sinceχ
is a class function, and on the other handχ(g) = χ(g−1) by Proposition 14. Combining these,
I find thatχ(g) = χ(g) for all g∈G, which means thatχ(g) is real for allg∈G.
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