Mathematics 505 Winter 2004

1. Find a commutative ring R, a short exact sequence of R-modules, and an R-module M, so that applying $M \otimes_{R}$ - to the short exact sequence yields a sequence which is not exact. Give reasons why the original sequence is exact and the new sequence isn't.

$$
0 \rightarrow \mathbf{Z} \xrightarrow{2} \mathbf{Z} \rightarrow \mathbf{Z} / 2 \rightarrow 0
$$

This is short exact because the left-hand map (multiplication by 2) is injective, and the right-hand term, $\mathbf{Z} / 2$, is isomorphic to the quotient of the middle term by the image of the left term.
Now let $M=\mathbf{Z} / 2$, and tensor with M :

$$
0 \rightarrow \mathbf{Z} / 2 \otimes_{\mathbf{Z}} \mathbf{Z} \xrightarrow{1 \otimes 2} \mathbf{Z} / 2 \otimes_{\mathbf{Z}} \mathbf{Z} \rightarrow \mathbf{Z} / 2 \otimes_{\mathbf{Z}} \mathbf{Z} / 2 \rightarrow 0
$$

Over any ring $R, M \otimes_{R} R \cong M$, so we can compute the first two terms easily. Over the integers, $\mathbf{Z} / m \otimes_{\mathbf{Z}} \mathbf{Z} / n \cong \mathbf{Z} /(m, n)$, so we can compute the last term, also. So our sequence is:

$$
0 \rightarrow \mathbf{Z} / 2 \xrightarrow{f} \mathbf{Z} / 2 \rightarrow \mathbf{Z} / 2 \rightarrow 0
$$

This is not exact. There are at least two ways to see this: if it were exact, then the order of the middle group would be the product of the orders of the other two groups (because the right-hand group would be the quotient of the middle group by the left-hand group). Since $2 \neq 2 \cdot 2$, the sequence isn't exact.
Alternatively, you can identify the map f :

$$
f: \mathbf{Z} / 2 \otimes_{\mathbf{Z}} \mathbf{Z} \rightarrow \mathbf{Z} / 2 \otimes_{\mathbf{Z}} \mathbf{Z}
$$

is defined by $f(a \otimes b)=a \otimes 2 b$. Since we are tensoring over the integers, $a \otimes 2 b=2 a \otimes b$. Since a is in $\mathbf{Z} / 2,2 a=0$, and thus $2 a \otimes b=0$, and so $f(a \otimes b)=0$ for all basic tensors $a \otimes b \in \mathbf{Z} / 2 \otimes_{\mathbf{Z}} \mathbf{Z}$. Since the basic tensors generate any tensor product, the map f must be the zero map. In particular, it is not one-to-one, and so the sequence isn't exact.
2. State the two classification theorems for finitely generated modules over a principal ideal domain, including an explanation of what uniqueness means in each theorem.

Solution. Let R be a principal ideal domain, and let M be a finitely generated R-module.

- Then M is isomorphic to

$$
R^{r} \oplus R /\left(a_{1}\right) \oplus \cdots \oplus R /\left(a_{m}\right)
$$

for some integer $r \geq 0$ and some nonzero, non-unit elements $a_{i} \in R$, such that $a_{1}\left|a_{2}\right| \cdots \mid a_{m}$. This expression is unique, in the sense that if M is also isomorphic to

$$
R^{s} \oplus R /\left(b_{1}\right) \oplus \cdots \oplus R /\left(b_{n}\right)
$$

for some $s \geq 0$ and $b_{j} \in R$ satisfying the same conditions as the a_{i}, then $r=s, m=n$, and for each $i,\left(a_{i}\right)=\left(b_{i}\right)$. That is, a_{i} and b_{i} differ only by a unit multiple.
Note that without the requirement that each a_{i} be nonzero and a nonunit, you don't have uniqueness: $R \oplus R \cong R \oplus R /(0) \cong R \oplus R \oplus R /(1)$, so there are three ways of writing the same module.

- Also, M is isomorphic to

$$
R^{r} \oplus R /\left(p_{1}^{\alpha_{1}}\right) \oplus \cdots \oplus R /\left(p_{k}^{\alpha_{k}}\right)
$$

for some integer $r \geq 0$, prime elements $p_{i} \in R$, and integers $\alpha_{i} \geq 1$. This expression is unique, in the sense that if M is also isomorphic to

$$
R^{s} \oplus R /\left(q_{1}^{\beta_{1}}\right) \oplus \cdots \oplus R /\left(q_{\ell}^{\beta_{\ell}}\right)
$$

for some integer $s \geq 0$, primes $q_{j} \in R$, and integers $\beta_{j} \geq 1$, then $r=s$, $k=\ell$, and one can reorder the q_{j} 's so that for each $i, \alpha_{i}=\beta_{i}$ and p_{i} and q_{i} differ only by a unit multiple.
3. Let F be a field, let V be an F-vector space, and let \mathbf{B} be a basis for V. Show that the set

$$
\mathbf{B}^{*}=\left\{v^{*}: v \in \mathbf{B}\right\}
$$

is linearly independent in V^{*}. Also show that if V is infinite-dimensional, then \mathbf{B}^{*} does not span V^{*}.
(Recall that the element $v^{*} \in \mathbf{B}^{*}$ is defined by the following: for $w \in \mathbf{B}$,

$$
v^{*}(w)= \begin{cases}1 & \text { if } v=w \\ 0 & \text { if } v \neq w .)\end{cases}
$$

Solution. To show that \mathbf{B}^{*} is linearly independent, I need to show that any finite subset of \mathbf{B}^{*} is linearly independent. So let $v^{*}=c_{1} v_{1}^{*}+\cdots+c_{n} v_{n}^{*}=0$ for some $v_{i} \in \mathbf{B}$ and some scalars c_{i}. By the definition of these dual elements, $v^{*}\left(v_{i}\right)=c_{i}$, and since $v^{*}=0$, I also know that $v^{*}\left(v_{i}\right)=0$. Thus I can conclude that each coefficient c_{i} is zero, and so the set \mathbf{B}^{*} is linearly independent.
Now assume that V is infinite-dimensional with basis B. Define $\alpha \in V^{*}$ by

$$
\alpha(v)=1 \text { for all } v \in \mathbf{B} .
$$

(Note that α is not defined by $\alpha(v)=1$ for all $v \in V-\alpha$ is only 1 when evaluated on basis elements. Note also that I haven't defined α using some sort of infinite sum, because infinite sums are not defined in vector spaces.) Then α is not in the span of \mathbf{B}^{*} : every element in \mathbf{B}^{*} is nonzero on exactly one element of \mathbf{B}, by definition, and so (since linear combinations are always finite sums) any linear combination of elements from \mathbf{B}^{*} will be nonzero on only finitely many elements of \mathbf{B}. Since \mathbf{B}^{*} is infinite, α is nonzero on infinitely many such elements, and so is not a linear combination of elements of \mathbf{B}^{*}.
4. Let F be a field, $n \geq 1$ an integer, and A an $n \times n$ matrix with entries in F. Show that A is similar to its transpose. (You can use standard facts about the transpose, like $(B C)^{t}=C^{t} B^{t}$ and $\left(P^{-1}\right)^{t}=\left(P^{t}\right)^{-1}$.)
Solution. Using rational canonical form, one can show that A is similar to a matrix B over F if and only if A is similar to B over any extension field of F. So to show that A is similar to A^{t}, we may work in an extension K of F which contains all of the eigenvalues of A. Over such a field, A is similar to its Jordan form J : there is a matrix $P \in G L_{n}(K)$ such that $P A P^{-1}=J$. Take the transpose (and use the "standard facts" mentioned above):

$$
\left(P^{t}\right)^{-1} A^{t} P^{t}=J^{t} .
$$

That is, since A is similar to J, then A^{t} is similar to J^{t}. So it suffices to show that J is similar to J^{t}. To do that, it suffices to consider the case in which J consists of a single Jordan block. (If you don't believe this yet, it should become clear in the rest of the proof.) So assume that J is a Jordan block with eigenvalue λ, which means that J represents a linear transformation T so that with respect to some basis $\left\{v_{1}, \ldots, v_{n}\right\}, T$ acts as follows:

$$
T\left(v_{i}\right)= \begin{cases}\lambda v_{1} & \text { if } i=1 \\ \lambda v_{i}+v_{i-1} & \text { if } 2 \leq i \leq n\end{cases}
$$

(Equivalently, as many of you noted, you can conjugate J by the matrix with 1 's down the anti-diagonal, from top right to bottom left, and 0's elsewhere.) Then the matrix for T with respect to the basis $\left\{v_{n}, \ldots, v_{1}\right\}$ is precisely J^{t}. So if I reverse the order of the basis, I get the transpose of the Jordan block. (Thus if J has more than one block, if I do this block-by-block, I will get the transpose of J.)

Alternatively, if you don't want to worry about doing things block by block, you can conjugate the transpose of the Jordan form of A by the matrix with 1's down the anti-diagonal. The result will have be of Jordan form, with the same Jordan blocks as for A, but in reverse order. This is similar to the Jordan form for A (since shuffling the Jordan blocks around leads to similar matrices).
5. Let R be a principal ideal domain. A corollary of Baer's criterion is: an R-module M is injective if and only if $r M=M$ for every nonzero $r \in R$.
(a) Use this to show that if M is injective, so is every quotient of M.
(b) Show that if R is not a field, then there are no nonzero finitely generated injective R-modules. (Equivalently, show that if there is a nonzero finitely generated injective R-module, then R must be a field.)

Solution. (a) If M is injective, then $r M=M$ for every nonzero $r \in R$. If N is any submodule of M, then I claim that $r(M / N)=M / N$. Clearly $r(M / N) \subseteq$ M / N. On the other hand, the elements of M / N are cosets $m+N$, and since $r M=M$, I can write the coset $m+N$ as $r m^{\prime}+N$ for some $m^{\prime} \in M$. Thus $r(M / N) \supseteq M / N$, and so by Baer's criterion, M / N is injective.
(b) Suppose M is a nonzero finitely generated R-module. It suffices to show that M has a quotient which is not injective. By the classification theorem,

$$
M \cong R^{n} \oplus R /\left(a_{1}\right) \oplus \cdots \oplus R /\left(a_{m}\right)
$$

where either $n>0$ or $m>0$ (and the a_{i} 's are nonzero, non-units). In particular, M has as a quotient either R or $R /(a)$ for some nonzero, non-unit $a \in R$. If R is not a field, then there is some nonzero element $r \in R$ which does not have a multiplicative inverse. Then $r R$ is a proper subset of R : the element 1 is contained in R, but is not in $r R$ (if it were, then there would be an element $s \in R$ such that $r s=1$, which would mean that r had an inverse). Thus R is not an injective R-module.

If R is not a quotient of M, then $R /(a)$ is for some nonzero, non-unit $a \in R$. Since a is not a unit, $R /(a)$ is not the zero module. On the other hand, $a(R /(a))=0$, so $a(R /(a)) \neq R /(a)$. Thus $R /(a)$ is not injective. By part (b), M cannot be injective.
(Equivalently, if you assume that M is finitely generated and injective, then using the last paragraph, you can deduce that M must be isomorphic to R^{n} for some n, and thus R is a quotient of M. Therefore $r R=R$ for every nonzero $r \in R$, and so the equation $1=r s$ can always be solved - every nonzero $r \in R$ has a multiplicative inverse. Thus R is a field.)
6. (extra-credit) Prove the corollary of Baer's criterion mentioned in the previous problem.
Solution. Recall that Baer's criterion says that if R is a ring, then a (left) R-module M is injective if and only if every for every left ideal I in R, every R-module homomorphism $f: I \rightarrow M$ can be extended to an R-module homomorphism $g: R \rightarrow M$.

That is, if $\mathrm{\imath}: I \rightarrow R$ is the inclusion map, given f, there exists a map g making this diagram commute:

Suppose that $r M=M$ for all nonzero $r \in R$. To show that M is injective, given an ideal I in R, since R is a PID, then $I=(r)$ for some r. So any R module map from I to M is determined by where r goes. Suppose $f: I \rightarrow M$ is defined by $f(r)=x$. Then $x=r y$ for some $y \in M$ (since $M=r M$), and the map $g: R \rightarrow M$ defined by $g(1)=y$ extends f.
Now suppose that M is injective, and fix $x \in M$ and $r \in R$, with r nonzero. I want to find an element $y \in M$ such that $r y=x$. Define $h: R \rightarrow R$ by $h(s)=r s$. Since R is an integral domain, this map is injective; thus for any map $k: R \rightarrow M$, I can complete this diagram:

In particular, define k by $k(1)=x$, and let $y=\ell(1)$. Then since $\ell \circ h=k$, I find that $k(1)=x$ equals $\ell(h(1))=r y$.
Equivalently, suppose that M is injective, and fix $x \in M$ and $r \in R$ with r nonzero. I want to find an element $y \in M$ such that $r y=x$. I would like to define a map $(r) \rightarrow M$ by $r \mapsto x$, but I don't know immediately if there is such an R-module map. (In general, there won't be - you can't map an arbitrary element r of a ring to an arbitrary element of some module; for example, if $R=\mathbf{Z} / 6$ and $M=\mathbf{Z} / 2$, then I can't map the element $2 \in R$ to $1 \in M$, because $3 \cdot 2=0$ in R, but $3 \cdot 1 \neq 0$ in M.) The key thing here is that since R is an integral domain, (r) is a free R-module of rank 1 , generated by r. So in this case, you can send r to any element of M and get an R-module map.
Once you have this map, extend it to a map $g: R \rightarrow M$ and let $y=g(1)$.

