Mathematics 505 Winter 2004

1. Find a commutative ring R, a short exact sequence of R-modules, and an R-module M, so that applying $M \otimes_R -$ to the short exact sequence yields a sequence which is not exact. Give reasons why the original sequence is exact and the new sequence isn't.

<u>Solution</u>. Let $R = \mathbb{Z}$. Here is a short exact sequence of \mathbb{Z} -modules:

$$0 \rightarrow {\pmb{Z}} \xrightarrow{2} {\pmb{Z}} \rightarrow {\pmb{Z}}/2 \rightarrow 0.$$

This is short exact because the left-hand map (multiplication by 2) is injective, and the right-hand term, $\mathbb{Z}/2$, is isomorphic to the quotient of the middle term by the image of the left term.

Now let $M = \mathbb{Z}/2$, and tensor with M:

$$0 \to \mathbf{Z}/2 \otimes_{\mathbf{Z}} \mathbf{Z} \xrightarrow{1 \otimes 2} \mathbf{Z}/2 \otimes_{\mathbf{Z}} \mathbf{Z} \to \mathbf{Z}/2 \otimes_{\mathbf{Z}} \mathbf{Z}/2 \to 0.$$

Over any ring R, $M \otimes_R R \cong M$, so we can compute the first two terms easily. Over the integers, $\mathbb{Z}/m \otimes_{\mathbb{Z}} \mathbb{Z}/n \cong \mathbb{Z}/(m,n)$, so we can compute the last term, also. So our sequence is:

$$0 \to \mathbf{Z}/2 \xrightarrow{f} \mathbf{Z}/2 \to \mathbf{Z}/2 \to 0.$$

This is not exact. There are at least two ways to see this: if it were exact, then the order of the middle group would be the product of the orders of the other two groups (because the right-hand group would be the quotient of the middle group by the left-hand group). Since $2 \neq 2 \cdot 2$, the sequence isn't exact.

Alternatively, you can identify the map *f*:

$$f: \mathbf{Z}/2 \otimes_{\mathbf{Z}} \mathbf{Z} \to \mathbf{Z}/2 \otimes_{\mathbf{Z}} \mathbf{Z}$$

is defined by $f(a \otimes b) = a \otimes 2b$. Since we are tensoring over the integers, $a \otimes 2b = 2a \otimes b$. Since *a* is in $\mathbb{Z}/2$, 2a = 0, and thus $2a \otimes b = 0$, and so $f(a \otimes b) = 0$ for all basic tensors $a \otimes b \in \mathbb{Z}/2 \otimes_{\mathbb{Z}} \mathbb{Z}$. Since the basic tensors generate any tensor product, the map *f* must be the zero map. In particular, it is not one-to-one, and so the sequence isn't exact.

2. State the two classification theorems for finitely generated modules over a principal ideal domain, including an explanation of what uniqueness means in each theorem.

Solution. Let R be a principal ideal domain, and let M be a finitely generated R-module.

• Then *M* is isomorphic to

$$R^r \oplus R/(a_1) \oplus \cdots \oplus R/(a_m)$$

for some integer $r \ge 0$ and some nonzero, non-unit elements $a_i \in R$, such that $a_1|a_2|\cdots|a_m$. This expression is unique, in the sense that if M is also isomorphic to

$$R^{s} \oplus R/(b_{1}) \oplus \cdots \oplus R/(b_{n})$$

for some $s \ge 0$ and $b_j \in R$ satisfying the same conditions as the a_i , then r = s, m = n, and for each i, $(a_i) = (b_i)$. That is, a_i and b_i differ only by a unit multiple.

Note that without the requirement that each a_i be nonzero and a nonunit, you don't have uniqueness: $R \oplus R \cong R \oplus R/(0) \cong R \oplus R \oplus R/(1)$, so there are three ways of writing the same module.

• Also, *M* is isomorphic to

$$R^r \oplus R/(p_1^{\alpha_1}) \oplus \cdots \oplus R/(p_k^{\alpha_k})$$

for some integer $r \ge 0$, prime elements $p_i \in R$, and integers $\alpha_i \ge 1$. This expression is unique, in the sense that if *M* is also isomorphic to

$$R^{s} \oplus R/(q_{1}^{\beta_{1}}) \oplus \cdots \oplus R/(q_{\ell}^{\beta_{\ell}})$$

for some integer $s \ge 0$, primes $q_j \in R$, and integers $\beta_j \ge 1$, then r = s, $k = \ell$, and one can reorder the q_j 's so that for each i, $\alpha_i = \beta_i$ and p_i and q_i differ only by a unit multiple.

3. Let *F* be a field, let *V* be an *F*-vector space, and let **B** be a basis for *V*. Show that the set

$$\mathbf{B}^* = \{ v^* : v \in \mathbf{B} \}$$

is linearly independent in V^* . Also show that if V is infinite-dimensional, then **B**^{*} does not span V^* .

(Recall that the element $v^* \in \mathbf{B}^*$ is defined by the following: for $w \in \mathbf{B}$,

$$v^*(w) = \begin{cases} 1 & \text{if } v = w, \\ 0 & \text{if } v \neq w. \end{cases}$$

<u>Solution.</u> To show that \mathbf{B}^* is linearly independent, I need to show that any finite subset of \mathbf{B}^* is linearly independent. So let $v^* = c_1v_1^* + \cdots + c_nv_n^* = 0$ for some $v_i \in \mathbf{B}$ and some scalars c_i . By the definition of these dual elements, $v^*(v_i) = c_i$, and since $v^* = 0$, I also know that $v^*(v_i) = 0$. Thus I can conclude that each coefficient c_i is zero, and so the set \mathbf{B}^* is linearly independent.

Now assume that *V* is infinite-dimensional with basis **B**. Define $\alpha \in V^*$ by

$$\alpha(v) = 1$$
 for all $v \in \mathbf{B}$.

(Note that α is not defined by $\alpha(v) = 1$ for all $v \in V - \alpha$ is only 1 when evaluated on basis elements. Note also that I haven't defined α using some sort of infinite sum, because infinite sums are not defined in vector spaces.)

Then α is not in the span of **B**^{*}: every element in **B**^{*} is nonzero on exactly one element of **B**, by definition, and so (since linear combinations are always finite sums) any linear combination of elements from **B**^{*} will be nonzero on only finitely many elements of **B**. Since **B**^{*} is infinite, α is nonzero on infinitely many such elements, and so is not a linear combination of elements of **B**^{*}.

4. Let *F* be a field, $n \ge 1$ an integer, and *A* an $n \times n$ matrix with entries in *F*. Show that *A* is similar to its transpose. (You can use standard facts about the transpose, like $(BC)^t = C^t B^t$ and $(P^{-1})^t = (P^t)^{-1}$.)

<u>Solution</u>. Using rational canonical form, one can show that *A* is similar to a matrix *B* over *F* if and only if *A* is similar to *B* over any extension field of *F*. So to show that *A* is similar to A^t , we may work in an extension *K* of *F* which contains all of the eigenvalues of *A*. Over such a field, *A* is similar to its Jordan form *J*: there is a matrix $P \in GL_n(K)$ such that $PAP^{-1} = J$. Take the transpose (and use the "standard facts" mentioned above):

$$(P^t)^{-1}A^tP^t = J^t.$$

That is, since A is similar to J, then A^t is similar to J^t . So it suffices to show that J is similar to J^t . To do that, it suffices to consider the case in which J consists of a single Jordan block. (If you don't believe this yet, it should become clear in the rest of the proof.) So assume that J is a Jordan block with eigenvalue λ , which means that J represents a linear transformation T so that with respect to some basis { v_1, \ldots, v_n }, T acts as follows:

$$T(v_i) = \begin{cases} \lambda v_1 & \text{if } i = 1, \\ \lambda v_i + v_{i-1} & \text{if } 2 \le i \le n. \end{cases}$$

(Equivalently, as many of you noted, you can conjugate *J* by the matrix with 1's down the anti-diagonal, from top right to bottom left, and 0's elsewhere.) Then the matrix for *T* with respect to the basis $\{v_n, \ldots, v_1\}$ is precisely J^t . So if I reverse the order of the basis, I get the transpose of the Jordan block. (Thus if *J* has more than one block, if I do this block-by-block, I will get the transpose of *J*.)

Alternatively, if you don't want to worry about doing things block by block, you can conjugate the transpose of the Jordan form of A by the matrix with 1's down the anti-diagonal. The result will have be of Jordan form, with the same Jordan blocks as for A, but in reverse order. This is similar to the Jordan form for A (since shuffling the Jordan blocks around leads to similar matrices).

- 5. Let *R* be a principal ideal domain. A corollary of Baer's criterion is: an *R*-module *M* is injective if and only if rM = M for every nonzero $r \in R$.
 - (a) Use this to show that if *M* is injective, so is every quotient of *M*.
 - (b) Show that if R is not a field, then there are no nonzero finitely generated injective R-modules. (Equivalently, show that if there is a nonzero finitely generated injective R-module, then R must be a field.)

Solution. (a) If *M* is injective, then rM = M for every nonzero $r \in R$. If *N* is any submodule of *M*, then I claim that r(M/N) = M/N. Clearly $r(M/N) \subseteq M/N$. On the other hand, the elements of M/N are cosets m + N, and since rM = M, I can write the coset m + N as rm' + N for some $m' \in M$. Thus $r(M/N) \supseteq M/N$, and so by Baer's criterion, M/N is injective.

(b) Suppose M is a nonzero finitely generated R-module. It suffices to show that M has a quotient which is not injective. By the classification theorem,

$$M \cong \mathbb{R}^n \oplus \mathbb{R}/(a_1) \oplus \cdots \oplus \mathbb{R}/(a_m),$$

where either n > 0 or m > 0 (and the a_i 's are nonzero, non-units). In particular, M has as a quotient either R or R/(a) for some nonzero, non-unit $a \in R$. If R is not a field, then there is some nonzero element $r \in R$ which does not have a multiplicative inverse. Then rR is a proper subset of R: the element 1 is contained in R, but is not in rR (if it were, then there would be an element $s \in R$ such that rs = 1, which would mean that r had an inverse). Thus R is not an injective R-module.

If R is not a quotient of M, then R/(a) is for some nonzero, non-unit $a \in R$. Since a is not a unit, R/(a) is not the zero module. On the other hand, a(R/(a)) = 0, so $a(R/(a)) \neq R/(a)$. Thus R/(a) is not injective. By part (b), M cannot be injective.

(Equivalently, if you assume that M is finitely generated and injective, then using the last paragraph, you can deduce that M must be isomorphic to R^n for some n, and thus R is a quotient of M. Therefore rR = R for every nonzero $r \in R$, and so the equation 1 = rs can always be solved – every nonzero $r \in R$ has a multiplicative inverse. Thus R is a field.)

6. (extra-credit) Prove the corollary of Baer's criterion mentioned in the previous problem.

Solution. Recall that Baer's criterion says that if *R* is a ring, then a (left) *R*-module *M* is injective if and only if every for every left ideal *I* in *R*, every *R*-module homomorphism $f: I \to M$ can be extended to an *R*-module homomorphism $g: R \to M$.

That is, if $\iota: I \to R$ is the inclusion map, given f, there exists a map g making this diagram commute:

Suppose that rM = M for all nonzero $r \in R$. To show that M is injective, given an ideal I in R, since R is a PID, then I = (r) for some r. So any R-module map from I to M is determined by where r goes. Suppose $f : I \to M$ is defined by f(r) = x. Then x = ry for some $y \in M$ (since M = rM), and the map $g : R \to M$ defined by g(1) = y extends f.

Now suppose that *M* is injective, and fix $x \in M$ and $r \in R$, with *r* nonzero. I want to find an element $y \in M$ such that ry = x. Define $h : R \to R$ by h(s) = rs. Since *R* is an integral domain, this map is injective; thus for any map $k : R \to M$, I can complete this diagram:

$$0 \longrightarrow R \xrightarrow{h} R$$
$$\downarrow_{k} \swarrow \ell$$
$$M$$

In particular, define k by k(1) = x, and let $y = \ell(1)$. Then since $\ell \circ h = k$, I find that k(1) = x equals $\ell(h(1)) = ry$.

Equivalently, suppose that *M* is injective, and fix $x \in M$ and $r \in R$ with *r* nonzero. I want to find an element $y \in M$ such that ry = x. I would like to define a map $(r) \to M$ by $r \mapsto x$, but I don't know immediately if there is such an *R*-module map. (In general, there won't be – you can't map an arbitrary element *r* of a ring to an arbitrary element of some module; for example, if $R = \mathbb{Z}/6$ and $M = \mathbb{Z}/2$, then I can't map the element $2 \in R$ to $1 \in M$, because $3 \cdot 2 = 0$ in *R*, but $3 \cdot 1 \neq 0$ in *M*.) The key thing here is that since *R* is an integral domain, (r) is a *free R*-module of rank 1, generated by *r*. So in this case, you can send *r* to any element of *M* and get an *R*-module map.

Once you have this map, extend it to a map $g : R \to M$ and let y = g(1).

