Mathematics 505  Winter 2004

1. Find a commutative ringR, a short exact sequence Bfmodules, and an
R-moduleM, so that applyingM ®r — to the short exact sequence yields
a sequence which is not exact. Give reasons why the original sequence is
exact and the new sequence isn't.

Solution.Let R= Z. Here is a short exact sequenceZemodules:

0-22%72-2/2-0.

This is short exact because the left-hand map (multiplication by 2) is in-
jective, and the right-hand terrd,/2, is isomorphic to the quotient of the
middle term by the image of the left term.

Now letM = Z /2, and tensor witiM:

0-2/2072 2% 7/20,2 —+2/20;2/2— 0.

Over any ringR, M ®rR= M, so we can compute the first two terms easily.
Over the integersZ/m®z Z/n = Z/(m,n), so we can compute the last
term, also. So our sequence is:

0-2z/25%2/2-2/20.

This is not exact. There are at least two ways to see this: if it were exact,
then the order of the middle group would be the product of the orders of
the other two groups (because the right-hand group would be the quotient
of the middle group by the left-hand group). Since2- 2, the sequence
isn’t exact.

Alternatively, you can identify the mafx
f:12/20zZ -Z2/2®zZ

is defined byf(a® b) = a® 2b. Since we are tensoring over the integers,
a®2b=2a®hb. SinceaisinZzZ/2, 2a=0, and thus 22 b =0, and so
f(a®b) =0 for all basic tensora®@b € Z/2®7 Z. Since the basic tensors
generate any tensor product, the nfamust be the zero map. In particular,
it is not one-to-one, and so the sequence isn’t exact.
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2. State the two classification theorems for finitely generated modules over a
principal ideal domain, including an explanation of what uniqueness means
in each theorem.

Solution.Let Rbe a principal ideal domain, and Ktbe a finitely generated
R-module.

e ThenM is isomorphic to
RoR/(a)®---®R/(am)

for some integer > 0 and some nonzero, non-unit elemeats R,
such that |ay|- - - |am. This expression is unique, in the sense that if
M is also isomorphic to

RoR/(n)® - ®R/(bn)

for somes > 0 andb; € R satisfying the same conditions as the
thenr =s, m=n, and for each, (&) = (bj). That is,a andb; differ
only by a unit multiple.

Note that without the requirement that eaglbe nonzero and a non-
unit, you don’t have uniqguenesRe R= R&R/(0) Z R&Ra&R/(1),
so there are three ways of writing the same module.

e Also, M is isomorphic to
ReR/(p1) @ &R/(RH)

for some integer > 0, prime elementp; € R, and integers; > 1.
This expression is unique, in the sense thM i also isomorphic to

ReR/() e - aR/(d)

for some integes > 0, primesgj € R, and integer§; > 1, thenr = s,
k = ¢, and one can reorder tlig’s so that for each, a; = [3j and p
andg; differ only by a unit multiple.
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3. LetF be afield, leV be anF-vector space, and |&be a basis fovy. Show
that the set
B*={v':veB}

is linearly independent iN*. Also show that iV is infinite-dimensional,
thenB* does not spaN *.

(Recall that the element € B* is defined by the following: fow € B,

1 ifv=w,
V*(W):{o if v w.)

Solution.To show thaB* is linearly independent, | need to show that any
finite subset oB* is linearly independent. So let = cqv] +---+¢Cyv, =0

for somey; € B and some scalarg. By the definition of these dual ele-
ments,v*(v;) = ¢;, and sincev* = 0, | also know thav*(v;) = 0. Thus I
can conclude that each coefficiantis zero, and so the s&" is linearly
independent.

Now assume that is infinite-dimensional with basiB. Definea € V* by
a(v) =1forallveB.

(Note thata is not defined by (v) =1 for allve V —a is only 1 when
evaluated on basis elements. Note also that | haven't definesing some
sort of infinite sum, because infinite sums are not defined in vector spaces.)

Thena is not in the span oB*: every element irB* is nonzero on ex-
actly one element oB, by definition, and so (since linear combinations
are always finite sums) any linear combination of elements fBinwill

be nonzero on only finitely many elementsif SinceB* is infinite, a is
nonzero on infinitely many such elements, and so is not a linear combination
of elements oB*.
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4. LetF be afield,n > 1 an integer, and ann x n matrix with entries inF.
Show thatA is similar to its transpose. (You can use standard facts about
the transpose, likéBC)! = C'B! and(P~1)t = (P')~1)

Solution.Using rational canonical form, one can show tAas similar to a
matrix B overF if and only if A is similar toB over any extension field of
F. So to show thaf is similar toAl, we may work in an extensio of F
which contains all of the eigenvaluesAf Over such a fieldA is similar to
its Jordan formJ: there is a matriP € GL(K) such thaPAP~1 = J. Take
the transpose (and use the “standard facts” mentioned above):

(Pt)flAtPt — Jt,

That is, sincéA is similar toJ, thenAl is similar toJ'. So it suffices to show
thatJ is similar toJ!. To do that, it suffices to consider the case in which
J consists of a single Jordan block. (If you don't believe this yet, it should
become clear in the rest of the proof.) So assumelhsita Jordan block
with eigenvalue\, which means thal represents a linear transformatién

so that with respect to some basis, ..., vy}, T acts as follows:

W) = {)\vl if i =1,

AVi+viig if2<i<n

(Equivalently, as many of you noted, you can conjugdtg the matrix with

1's down the anti-diagonal, from top right to bottom left, and O’s elsewhere.)
Then the matrix foiT with respect to the basisv,, ..., v1} is preciselydt.

So if I reverse the order of the basis, | get the transpose of the Jordan block.
(Thus if J has more than one block, if | do this block-by-block, | will get
the transpose af.)

Alternatively, if you don’t want to worry about doing things block by block,
you can conjugate the transpose of the Jordan forélof the matrix with

1's down the anti-diagonal. The result will have be of Jordan form, with
the same Jordan blocks as farbut in reverse order. This is similar to the
Jordan form folA (since shuffling the Jordan blocks around leads to similar
matrices).
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5. LetR be a principal ideal domain. A corollary of Baer’s criterion is: an
R-moduleM is injective if and only ifrM = M for every nonzero € R

() Use this to show that M is injective, so is every quotient ®4.

(b) Show that ifRis not a field, then there are no nonzero finitely gener-
ated injectiveR-modules. (Equivalently, show that if there is a nonzero
finitely generated injectiv®-module, therkR must be a field.)

Solution.(a) If M is injective, themrM = M for every nonzero € R. If N is
any submodule o¥1, then | claim that (M/N) = M/N. Clearlyr(M/N) C
M/N. On the other hand, the elementdwfN are cosetsn+ N, and since
rM = M, | can write the cosein+ N asrm’ + N for somem’ € M. Thus
r(M/N) > M/N, and so by Baer’s criteriot /N is injective.

(b) Supposé/ is a nonzero finitely generatédmodule. It suffices to show
thatM has a quotient which is not injective. By the classification theorem,

M=R'@R/(a1)®--- ®R/(am),

where eithemn > 0 orm > 0 (and theg;’s are nonzero, non-units). In par-
ticular, M has as a quotient eith& or R/(a) for some nonzero, non-unit
ac R If Ris not a field, then there is some nonzero elemeniR which
does not have a multiplicative inverse. Th&his a proper subset & the
element 1 is contained iR, but is not inrR (if it were, then there would be
an elemens € Rsuch thats = 1, which would mean thathad an inverse).
ThusRis not an injectiveR-module.

If Ris not a quotient oM, thenR/(a) is for some nonzero, non-urate R.
Sincea is not a unit,R/(a) is not the zero module. On the other hand,
a(R/(a)) =0, soa(R/(a)) # R/(a). ThusR/(a) is not injective. By part
(b), M cannot be injective.

(Equivalently, if you assume th#d is finitely generated and injective, then
using the last paragraph, you can deduce khahust be isomorphic t&"
for somen, and thusR is a quotient ofM. ThereforerR = R for every
nonzeror € R, and so the equation % rs can always be solved — every
nonzera € Rhas a multiplicative inverse. Thiis a field.)
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6. (extra-credit) Prove the corollary of Baer’s criterion mentioned in the previ-
ous problem.

Solution.Recall that Baer’s criterion says thatRfis a ring, then a (left)
R-module M is injective if and only if every for every left idedl in R,
everyR-module homomorphisrh: | — M can be extended to &module
homomorphisng : R — M.

That is, if1 : | — R is the inclusion map, giveri, there exists a mag
making this diagram commute:

0——=|—=R

Suppose thatM = M for all nonzeror € R. To show thatM is injective,
given an ideal in R, sinceR s a PID, then = (r) for somer. So anyR-
module map front to M is determined by whenegoes. Supposé: | — M
is defined byf(r) = x. Thenx = ry for somey € M (sinceM = rM), and
the mapg : R— M defined byg(1) =y extendsf.

Now suppose tha¥l is injective, and fixx € M andr € R, with r nonzero.

| want to find an elemeny € M such thatry = x. Defineh: R— R by
h(s) =rs. SinceRis an integral domain, this map is injective; thus for any
mapk : R— M, | can complete this diagram:

0—>R-"-R

s

M
In particular, defind by k(1) = x, and lety = ¢(1). Then sincoh =Kk, |
find thatk(1) = x equals/(h(1)) =ry.
Equivalently, suppose thd is injective, and fixx e M andr € Rwith r
nonzero. | want to find an elemeptc M such thaty = x. | would like
to define a magr) — M by r — X, but | don’t know immediately if there
is such arR-module map. (In general, there won't be — you can’'t map an
arbitrary element of a ring to an arbitrary element of some module; for
example, ifR=2Z/6 andM = Z /2, then | can’'t map the element2R to
1€ M, because 2 =0inR, but 3-1+# 0in M.) The key thing here is that
sinceRis an integral domair(r) is afree Rmodule of rank 1, generated by
r. So in this case, you can sentb any element oM and get arR-module
map.

Once you have this map, extend it to a nggR — M and lety = g(1).
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