Mathematics 402 Exam Solutions

1. (10 points) Determine the group of automorphisms of $C_5 = \{1, a, a^2, a^3, a^4 \mid a^5 = 1\}$.

<u>Solution</u>. By problem 4(a), every homomorphism f from C_5 to itself is determined by where a goes. If f(a) = 1, then f sends every element to 1, and this is not an automorphism. Since 5 is prime, a^i is a generator of C_5 when i = 1, 2, 3, 4, so if f(a) is any of these, then the resulting homomorphism is an automorphism.

Thus there are four automorphisms of C_5 :

- f_1 , defined by $f_1(a) = a$. This is the identity map, and so is the identity element in the group of automorphisms.
- f_2 , defined by $f_2(a) = a^2$.
- f_3 , defined by $f_3(a) = a^3$.
- f_4 , defined by $f_4(a) = a^4$.

Since the automorphism group has four elements, it must be isomorphic to either C_4 or to the Klein 4-group, $C_2 \times C_2$. I claim that the element f_2 has order 4:

$$(f_2 \circ f_2)(a) = f_2(f_2(a)) = f_2(a^2) = a^4,$$

so $f_2^2 = f_2 \circ f_2 = f_4$.

$$(f_2 \circ f_2 \circ f_2)(a) = f_2(a^4) = a^8 = a^3,$$

so $f_2^3 = f_2 \circ f_2 \circ f_2 = f_3$. I can also compute f_2^4 and show that it's the identity map, or I can observe that since I'm working in a group of order 4, the fourth power of every element is the identity. Since no smaller power of f_2 equals f_1 , I conclude that f_2 has order 4. Therefore the automorphism group is isomorphic to C_4 .

2. (10 points) Let p be a prime number and let G be a group of order p^2 . Prove that G is isomorphic to either C_{p^2} or $C_p \times C_p$.

You may use the following fact (which we will prove later in the quarter): every group of order p^2 is abelian.

It may also be helpful to recall this fact about products: if *H* and *K* are normal subgroups of a group *G* such that $H \cap K = \{1\}$ and HK = G, then $G \approx H \times K$.

[If you can't do this in general, you can get up to 7 points for doing the case when p = 3. If you can't do that, you can get up to 4 points for doing the case when p = 2.]

Solution. By Lagrange's theorem, the order of any element of *G* must divide $|G| = p^2$. Since *p* is prime, this means that the orders of the elements of *G* can be 1, *p*, or p^2 . Only the identity element has order 1, of course, so the other elements all have order *p* or p^2 .

If G contains an element g of order p^2 , then G is cyclic: if g has order p^2 , then the cyclic subgroup generated by g has order p^2 . Since it's a subgroup of G, and since G has order p^2 , it must be all of G.

Otherwise, every non-identity element of *G* has order *p*. Choose some such element *h*, and let *H* be the cyclic subgroup generated by *h*. Then |H| = p, and since *p* is prime, $H \approx C_p$. The elements of

H account for only *p* of the p^2 elements of *G*, so there must be other elements in *G*. So choose some element *k* which is in *G* but not in *H*, and let *K* be the subgroup generated by *k*. Since $k \neq 1$ (because $1 \in H$ and $k \notin H$), *k* has order *p*; thus |K| = p, and $K \approx C_p$.

I want to use the theorem about products described above. First, by the "fact" above, I may assume that G is abelian. Every subgroup of an abelian group is normal, and thus H and K are normal subgroups of G.

Next, $H \cap K$ is a subgroup of K, and so its order must divide |K| = p. Since p is prime, this means that $|H \cap K|$ is either 1 or p. If it's p, then $H \cap K = K$, which means that $k \in H \cap K \subseteq H$. But I chose k so that $k \notin H$. Therefore $|H \cap K| = 1$, so $H \cap K = \{1\}$.

Alternatively, suppose that $a \in H \cap K$. Since $a \in H$, then $a = h^i$ for some *i*. Since $a \in K$, then $a = k^j$ for some *j*. This means that $h^i = k^j$. Since *p* is prime, every non-identity element of *K* generates *K*, so if $k^j \neq 1$, then some power of k^j equals *k*; say $k^{jm} = k$. But since $h^i = k^j$, I find that $h^{im} = k$. This is a contradiction, though, because I chose *k* so that $k \notin H$, and h^{im} is in *H*.

The last thing I need to do is to show that HK = G. There are several ways to do this. One of them is to cite problem 9 in section 2.8. I prefer to use problem 5 in section 2.7: since *K* is normal (or since *H* is normal), the product set *HK* is a subgroup of *G*. Its order must therefore be 1, *p*, or p^2 . *HK* contains all of *H*, and it also contains the element *k*, so |HK| > p. Thus $HK = p^2$, and this means that HK = G.

You can also prove this directly: you need to show that the order of HK is p^2 . Well, HK is equal to

$$\{h^i k^j | 0 \le i \le p-1, \ 0 \le j \le p-1\}.$$

If I knew that all of these elements were distinct, then I would have p^2 different elements, and so I could conclude that HK = G. So assume that $h^i k^j = h^m k^n$. Rearranging terms, I get $h^{i-m} = k^{n-j}$. The left side of this equation is in H, and the right side is in K; since they're equal, both sides must be in $H \cap K = \{1\}$, so both sides are equal to 1. That means that $h^i = h^m$ and $k^j = k^n$. In other words, as the exponents vary, the elements $h^i k^j$ are distinct.

By the fact about products stated above, I can conclude that $G \approx C_p \times C_p$.

3. (10 points) Prove that 2 has a multiplicative inverse modulo *n* if and only if *n* is odd. (By "2 has a multiplicative inverse modulo *n*," I mean that in $\mathbb{Z}/n\mathbb{Z}$, there exists an element \overline{k} such that $\overline{k} \,\overline{2} = \overline{1}$.)

Solution. If *n* is odd, then n = 2k - 1 for some integer *k*. So *n* clearly divides 2k - 1, which means that $2k \equiv 1 \pmod{n}$; therefore if k = (n+1)/2, then \overline{k} is the multiplicative inverse of $\overline{2}$ in $\mathbb{Z}/n\mathbb{Z}$.

If 2 has a multiplicative inverse mod *n*, then there is an integer *k* so that $2k \equiv 1 \pmod{n}$. This means that *n* divides 2k - 1. The number 2k - 1 is odd, and every divisor of an odd number is odd; therefore *n* must be odd.

- 4. (10 points) Fix a positive integer n, let C_n be a cyclic group of order n generated by a, and let G be a group.
 - (a) Prove that any homomorphism $f : C_n \to G$ is determined by f(a): that is, if you know f(a), you can figure out f(b) for any $b \in C_n$.

Solution. For any $b \in C_n$, b is of the form $b = a^k$ for some k. Since f is a homomorphism, $f(b) = f(a^k) = [f(a)]^k$. So if I know f(a), I can compute $f(b) = f(a^k)$ just by raising f(a) to its kth power.

(b) In this setting, f(a) cannot be an arbitrary element of G; what restrictions are there on f(a)? (Equivalently, what properties must f(a) have?)

Solution. Since *a* has order *n*, $a^n = 1$. Apply $f: f(a^n) = f(1) = 1$. Since *f* is a homomorphism, this means that $[f(a)]^n = 1$. This means that the order of f(a) divides *n*.

(c) Describe all of the homomorphisms $C_4 \rightarrow C_8$. How many of them are onto? How many of them are one-to-one?

Solution. Let $C_4 = \{1, a, a^2, a^3\}$, and let $C_8 = \{1, b, b^2, \dots, b_7\}$. By part (a), every homomorphism $f: C_4 \to C_8$ is determined by f(a). By part (b), f(a) must have order 1, 2, or 4. We can compute the orders of the elements in C_8 :

element	1	b	b^2	b^3	b^4	b^5	b^6	b^7
order	1	8	4	8	2	8	4	8

So there are 4 homomorphisms: $a \mapsto 1$, $a \mapsto b^2$, $a \mapsto b^4$, and $a \mapsto b^6$. None of these is onto; after all, C_4 has 4 elements and C_8 has 8, so there are no surjective functions from C_4 to C_8 . The maps $a \mapsto b^2$ and $a \mapsto b^6$ are one-to-one: if a gets sent to b^2 , then a^2 gets sent to b^4 , a^3 to b^6 , and 1 to 1. Thus all elements of C_4 go to different places. The same goes for the map sending a to b^6 . (Alternatively, the kernels of these maps are both $\{1\}$.)

The map defined by $a \mapsto 1$ is not one-to-one, because both 1 and a go to 1. The map defined by $a \mapsto b^4$ is not one-to-one, because both 1 and a^2 go to 1.

So there are no onto maps, and two one-to-one maps.