Mathematics 402 Exam

Solutions

1. (10 points) Determine the group of automorphisms of $C_{5}=\left\{1, a, a^{2}, a^{3}, a^{4} \mid a^{5}=1\right\}$.

Solution. By problem $4(\mathrm{a})$, every homomorphism f from C_{5} to itself is determined by where a goes. If $f(a)=1$, then f sends every element to 1 , and this is not an automorphism. Since 5 is prime, a^{i} is a generator of C_{5} when $i=1,2,3,4$, so if $f(a)$ is any of these, then the resulting homomorphism is an automorphism.

Thus there are four automorphisms of C_{5} :

- f_{1}, defined by $f_{1}(a)=a$. This is the identity map, and so is the identity element in the group of automorphisms.
- f_{2}, defined by $f_{2}(a)=a^{2}$.
- f_{3}, defined by $f_{3}(a)=a^{3}$.
- f_{4}, defined by $f_{4}(a)=a^{4}$.

Since the automorphism group has four elements, it must be isomorphic to either C_{4} or to the Klein 4 -group, $C_{2} \times C_{2}$. I claim that the element f_{2} has order 4:

$$
\left(f_{2} \circ f_{2}\right)(a)=f_{2}\left(f_{2}(a)\right)=f_{2}\left(a^{2}\right)=a^{4}
$$

so $f_{2}^{2}=f_{2} \circ f_{2}=f_{4}$.

$$
\left(f_{2} \circ f_{2} \circ f_{2}\right)(a)=f_{2}\left(a^{4}\right)=a^{8}=a^{3}
$$

so $f_{2}^{3}=f_{2} \circ f_{2} \circ f_{2}=f_{3}$. I can also compute f_{2}^{4} and show that it's the identity map, or I can observe that since I'm working in a group of order 4 , the fourth power of every element is the identity. Since no smaller power of f_{2} equals f_{1}, I conclude that f_{2} has order 4 . Therefore the automorphism group is isomorphic to C_{4}.
2. (10 points) Let p be a prime number and let G be a group of order p^{2}. Prove that G is isomorphic to either $C_{p^{2}}$ or $C_{p} \times C_{p}$.
You may use the following fact (which we will prove later in the quarter): every group of order p^{2} is abelian.

It may also be helpful to recall this fact about products: if H and K are normal subgroups of a group G such that $H \cap K=\{1\}$ and $H K=G$, then $G \approx H \times K$.
[If you can't do this in general, you can get up to 7 points for doing the case when $p=3$. If you can't do that, you can get up to 4 points for doing the case when $p=2$.]
$\underline{\text { Solution. By Lagrange's theorem, the order of any element of } G \text { must divide }|G|=p^{2} \text {. Since } p \text { is prime, }}$ this means that the orders of the elements of G can be $1, p$, or p^{2}. Only the identity element has order 1 , of course, so the other elements all have order p or p^{2}.
If G contains an element g of order p^{2}, then G is cyclic: if g has order p^{2}, then the cyclic subgroup generated by g has order p^{2}. Since it's a subgroup of G, and since G has order p^{2}, it must be all of G.

Otherwise, every non-identity element of G has order p. Choose some such element h, and let H be the cyclic subgroup generated by h. Then $|H|=p$, and since p is prime, $H \approx C_{p}$. The elements of
H account for only p of the p^{2} elements of G, so there must be other elements in G. So choose some element k which is in G but not in H, and let K be the subgroup generated by k. Since $k \neq 1$ (because $1 \in H$ and $k \notin H), k$ has order p; thus $|K|=p$, and $K \approx C_{p}$.

I want to use the theorem about products described above. First, by the "fact" above, I may assume that G is abelian. Every subgroup of an abelian group is normal, and thus H and K are normal subgroups of G.

Next, $H \cap K$ is a subgroup of K, and so its order must divide $|K|=p$. Since p is prime, this means that $|H \cap K|$ is either 1 or p. If it's p, then $H \cap K=K$, which means that $k \in H \cap K \subseteq H$. But I chose k so that $k \notin H$. Therefore $|H \cap K|=1$, so $H \cap K=\{1\}$.
Alternatively, suppose that $a \in H \cap K$. Since $a \in H$, then $a=h^{i}$ for some i. Since $a \in K$, then $a=k^{j}$ for some j. This means that $h^{i}=k^{j}$. Since p is prime, every non-identity element of K generates K, so if $k^{j} \neq 1$, then some power of k^{j} equals k; say $k^{j m}=k$. But since $h^{i}=k^{j}$, I find that $h^{i m}=k$. This is a contradiction, though, because I chose k so that $k \notin H$, and $h^{i m}$ is in H.

The last thing I need to do is to show that $H K=G$. There are several ways to do this. One of them is to cite problem 9 in section 2.8. I prefer to use problem 5 in section 2.7: since K is normal (or since H is normal), the product set $H K$ is a subgroup of G. Its order must therefore be $1, p$, or p^{2}. $H K$ contains all of H, and it also contains the element k, so $|H K|>p$. Thus $H K=p^{2}$, and this means that $H K=G$. You can also prove this directly: you need to show that the order of $H K$ is p^{2}. Well, $H K$ is equal to

$$
\left\{h^{i} k^{j} \mid 0 \leq i \leq p-1,0 \leq j \leq p-1\right\} .
$$

If I knew that all of these elements were distinct, then I would have p^{2} different elements, and so I could conclude that $H K=G$. So assume that $h^{i} k^{j}=h^{m} k^{n}$. Rearranging terms, I get $h^{i-m}=k^{n-j}$. The left side of this equation is in H, and the right side is in K; since they're equal, both sides must be in $H \cap K=\{1\}$, so both sides are equal to 1 . That means that $h^{i}=h^{m}$ and $k^{j}=k^{n}$. In other words, as the exponents vary, the elements $h^{i} k^{j}$ are distinct.

By the fact about products stated above, I can conclude that $G \approx C_{p} \times C_{p}$.
3. (10 points) Prove that 2 has a multiplicative inverse modulo n if and only if n is odd. (By " 2 has a multiplicative inverse modulo n," I mean that in $\mathbf{Z} / n \mathbf{Z}$, there exists an element \bar{k} such that $\bar{k} \overline{2}=\overline{1}$.)
Solution. If n is odd, then $n=2 k-1$ for some integer k. So n clearly divides $2 k-1$, which means that $2 k \equiv 1(\bmod n)$; therefore if $k=(n+1) / 2$, then \bar{k} is the multiplicative inverse of $\overline{2}$ in $\mathbf{Z} / n \mathbf{Z}$.
If 2 has a multiplicative inverse $\bmod n$, then there is an integer k so that $2 k \equiv 1(\bmod n)$. This means that n divides $2 k-1$. The number $2 k-1$ is odd, and every divisor of an odd number is odd; therefore n must be odd.
4. (10 points) Fix a positive integer n, let C_{n} be a cyclic group of order n generated by a, and let G be a group.
(a) Prove that any homomorphism $f: C_{n} \rightarrow G$ is determined by $f(a)$: that is, if you know $f(a)$, you can figure out $f(b)$ for any $b \in C_{n}$.
Solution. For any $b \in C_{n}, b$ is of the form $b=a^{k}$ for some k. Since f is a homomorphism, $f(b)=f\left(a^{k}\right)=[f(a)]^{k}$. So if I know $f(a)$, I can compute $f(b)=f\left(a^{k}\right)$ just by raising $f(a)$ to its k th power.
(b) In this setting, $f(a)$ cannot be an arbitrary element of G; what restrictions are there on $f(a)$? (Equivalently, what properties must $f(a)$ have?)
 this means that $[f(a)]^{n}=1$. This means that the order of $f(a)$ divides n.
(c) Describe all of the homomorphisms $C_{4} \rightarrow C_{8}$. How many of them are onto? How many of them are one-to-one?
Solution. Let $C_{4}=\left\{1, a, a^{2}, a^{3}\right\}$, and let $C_{8}=\left\{1, b, b^{2}, \cdots, b_{7}\right\}$. By part (a), every homomorphism $f: C_{4} \rightarrow C_{8}$ is determined by $f(a)$. By part (b), $f(a)$ must have order 1,2 , or 4 . We can compute the orders of the elements in C_{8} :

element	1	b	b^{2}	b^{3}	b^{4}	b^{5}	b^{6}	b^{7}
order	1	8	4	8	2	8	4	8

So there are 4 homomorphisms: $a \mapsto 1, a \mapsto b^{2}, a \mapsto b^{4}$, and $a \mapsto b^{6}$. None of these is onto; after all, C_{4} has 4 elements and C_{8} has 8 , so there are no surjective functions from C_{4} to C_{8}. The maps $a \mapsto b^{2}$ and $a \mapsto b^{6}$ are one-to-one: if a gets sent to b^{2}, then a^{2} gets sent to b^{4}, a^{3} to b^{6}, and 1 to 1 . Thus all elements of C_{4} go to different places. The same goes for the map sending a to b^{6}. (Alternatively, the kernels of these maps are both $\{1\}$.)
The map defined by $a \mapsto 1$ is not one-to-one, because both 1 and a go to 1 . The map defined by $a \mapsto b^{4}$ is not one-to-one, because both 1 and a^{2} go to 1 .
So there are no onto maps, and two one-to-one maps.

