Name: \qquad

Mathematics 402A Final

December 15, 2004

Instructions: This is a closed book exam, no calculators allowed. You may use one sheet of notes (8.5" x 11 ", and either hand-written two-sided, or typed and single-sided). Justify all of your answers. You may refer to and use any result from the book or from the homework problems (but not the practice problems).
\mathbf{R} denotes the set of real numbers. For any positive integer n, C_{n} denotes a cyclic group of order n.
This is a timed exam, so you may use abbreviations and symbols (such as " \forall "): as long as I can make sense of what you write without struggling too much, it's okay.

1. (15 points) In class I stated, but did not prove, the following classification theorem: every abelian group of order 8 is isomorphic to $C_{8}, C_{4} \times C_{2}$, or $C_{2} \times C_{2} \times C_{2}$. Prove this. [Hint: imitate the classification of groups of order 6.]
2. (10 points) How many rotational symmetries does a rhombicuboctahedron have?

How many rotational symmetries does a truncated tetrahedron have?
How many rotational symmetries does a cuboctahedron have?
How many rotational symmetries does a truncated cuboctahedron have?
How many rotational symmetries does a rhombicosidodecahedron have?
How many rotational symmetries does a truncated icosahedron have?
3. (10 points) Let $C_{n}=\left\{1, x, x^{2}, \ldots, x^{n-1} \mid x^{n}=1\right\}$ denote a cyclic group of order n, generated by x. What is the order of x^{i}, where $0 \leq i \leq n-1$? Your answer is likely to depend on i and n.
(If you can't do this in general, do special cases. For example, what if n is prime? What if n is a power of a prime? Can you answer the question for some values of i ?)
4. (10 points) Determine the point groups of the symmetry groups of each of these subsets of the plane. Give brief explanations of your answers.
(a)

(b)

5. (10 points) The following statement has some errors in it; fix the errors to produce a true statement. Explain briefly why the original statement was false and why the new statement is true.
"For each integer $n \geq 0, G L_{n}(\mathbf{R}) / S L_{n}(\mathbf{R}) \approx \mathbf{R}$."
6. (15 points) Consider the dihedral group D_{6}.
(a) Find all of the subgroups of D_{6}.
(b) Which ones are normal?
(c) What is the class equation for D_{6} ?

