
Mathematics 402A Final Solutions
December 15, 2004

1. (15 points) In class I stated, but did not prove, the following classification theorem: every abelian group
of order 8 is isomorphic to C8, C4 ×C2, or C2 ×C2 ×C2. Prove this. [Hint: imitate the classification of
groups of order 6.]

Solution. Suppose that G is an abelian group of order 8. By Lagrange’s theorem, the elements of G can
have order 1, 2, 4, or 8.

If G contains an element of order 8, then G is cyclic, generated by that element: G ≈C8.

Suppose that G has no elements of order 8, but contains an element x of order 4. Let H = {1,x,x2,x3}
be the cyclic subgroup generated by x. If I can find an element y of order 2 which is not in H , then
I claim that I’m done: given such a y, let K = {1,y} be the cyclic subgroup generated by y. Then H
and K are both normal in G (since G is abelian), H ∩K = {1} by inspection, and also HK = G. To see
this last equality, note that HK is a subgroup of G since H and K are normal, and it contains H and K,
so its order is at least 5. Since its order must divide 8, its order must equal 8, so it is all of G. By the
theorem in the book about products, I can conclude that G ≈ H ×K. Since H ≈C4 and K ≈C2, I get
G ≈C4 ×C2.

So I still need to find an element in G, and not in H , of order 2. Pick z 6∈ H . If z does not have order 2,
then it has order 4. In this case, z2 has order 2. If z2 is not in H , I’m done. If it is in H , then z2 is either
x, x2, or x3. If z2 = x or z2 = x3, then z has order 8, which I’m assuming doesn’t happen. If z2 = x2, then
zx is an element of order 2 which is not contained in H .

Now suppose that G has no elements order 4 or 8. Let x and y be distinct elements of order 2, and
let H and K be the subgroups that they each generate. Then HK = {1,x,y,xy} is a subgroup of G and
is isomorphic to H ×K ≈C2 ×C2. Find an element z not in HK; then z has order 2, and let L be the
subgroup that it generates. Then HK and L are both normal, HK ∩L = {1} by our choice of z, and
HKL = G – you can verify this last assertion the same way I did in the previous case. So by the theorem
on products, G ≈ HK×L ≈ H ×K×L ≈C2 ×C2 ×C2.

2. (10 points) How many rotational symmetries does a rhombicuboctahedron have?

Solution. 24

How many rotational symmetries does a truncated tetrahedron have?

Solution. 12

How many rotational symmetries does a cuboctahedron have?

Solution. 24

How many rotational symmetries does a truncated cuboctahedron have?

Solution. 24

How many rotational symmetries does a rhombicosidodecahedron have?

Solution. 60

How many rotational symmetries does a truncated icosahedron have?
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Solution. 60

I’ll do this one as an example. There are 12 pentagonal faces, so pick one. Its orbit consists of all 12
faces, and its stabilizer consists of the 5 rotations about an axis through the center of that face. So there
are 12 ·5 = 60 total rotational symmetries. Alternatively, there are 20 hexagonal faces, so pick one. Its
orbit consists of all 20 faces, but its stabilizer only contains three rotations: three of the six rotations
of the hexagon send this figure to itself, but three of them don’t. So there are 20 · 3 = 60 rotational
symmetries.

3. (10 points) Let Cn = {1,x,x2, . . . ,xn−1 | xn = 1} denote a cyclic group of order n, generated by x. What
is the order of xi, where 0 ≤ i ≤ n−1? Your answer is likely to depend on i and n.

(If you can’t do this in general, do special cases. For example, what if n is prime? What if n is a power
of a prime? Can you answer the question for some values of i?)

Solution. Let’s see. Let m be the order of xi. If I let d be the greatest common divisor of i and n, so that
i = dr and n = ds with r and s relatively prime, then I claim that m = s.

First, xis = xdrs = xrn = 1, so m divides s. On the other hand, since xim = 1, then im = drm is divisible
by n = ds, which means that rm is divisible by s. Since r and s are relatively prime, this means that m
is divisible by s. Since m divides s and s divides m, I can conclude that s = m.

Given all of this, I can rewrite the answer: the order of xi is

n
gcd(i,n)

=
lcm(i,n)

i
.

4. (10 points) Determine the point groups of the symmetry groups of each of these subsets of the plane.
Give brief explanations of your answers.

(a) (b)

Solution. (a) The point group contains a reflection (across a diagonal line running northwest/southeast),
and no rotations: any nontrivial rotation will take a black triangle to a black triangle oriented differently
– look at where the right angle goes. So the point group is isomorphic to D1 or to C2, generated by a
single reflection.

(b) The figure has 6-fold rotational symmetry, and no reflections. So the point group is isomorphic to
C6.
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5. (10 points) The following statement has some errors in it; fix the errors to produce a true statement.
Explain briefly why the original statement was false and why the new statement is true.

“For each integer n ≥ 0, GLn(R)/SLn(R) ≈ R.”

Solution. There are two errors. It should say

“For each integer n ≥ 1 , GLn(R)/SLn(R) ≈ R× .”

When n = 0, GL0(R) = SL0(R) = {1}, the trivial group, and so the quotient group will also be isomor-
phic to {1}.

(Or if you like, GL0(R) is not defined.)

When n > 0, SLn(R) is the kernel of the determinant map GLn(R) → R×, so since this determinant
map is surjective, the first isomorphism theorem gives an isomorphism between GLn(R)/SLn(R) and
the image, R×.

6. (15 points) Consider the dihedral group D6.

(a) Find all of the subgroups of D6.

Solution. First, I’ll write down the elements of D6:

D6 = {1,x,x2,x3,x4,x5,y,xy,x2y,x3y,x4y,x5y | x6 = 1,y2 = 1,yx = x5y}.

This group has order 12, so the possible orders of subgroups are 1, 2, 3, 4, 6, 12. I’ll deal with
these in order:

order 1: {1} is the only subgroup of order 1.

order 2: each subgroup of order 2 must contain the identity element plus an element of order 2.
I know the orders of the elements in D6, so I can list all of these subgroups. The first of these is
maybe the easiest to miss:

{1,x3},{1,y},{1,xy},{1,x2 y},{1,x3y},{1,x4y},{1,x5y}.

order 3: x2 and x4 are the only elements of order 3, so there is only one subgroup of order 3:
{1,x2,x4}.

order 4: there are no elements of order 4, so any subgroup of order 4 must contain the identity
element plus three elements of order 2. I know all of the elements of order 2, so the only question
is, which pairs of such elements generate a subgroup of order 4? For example, y and xy do not,
because their product (in one order) is xyy = x, so any subgroup containing y and xy must also
contain x, and so must contain all of D6. Similarly, any subgroup containing xiy and x jy must
contain xi− j and x j−i. The only way for this to produce a subgroup of order 4 is if xi− j = x3 = x j−1.
So here are the subgroups of order 4:

{1,x3,y,x3y},{1,x3,xy,x4y},{1,x3,x2y,x5y}.

order 6: there is one element of order 6, namely x, so that gives me one subgroup of order 6:
{1,x,x2,x3,x4,x5}. Are there any others? If there were, they would need to be isomorphic to S3,
since they wouldn’t contain any elements of order 6. So they would have to contain two elements
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of order 3 and three elements of order 2. So they would have to contain x2 and x4, plus three
elements of order 2. Since the resulting set must be closed, these are the only possibilities:

{1,x,x2,x3,x4,x5},{1,x2,x4,y,x2y,x4y},{1,x2,x4,xy,x3y,x5y}.

These are all subgroups.

order 12: the whole group is the only subgroup of order 12.

(b) Which ones are normal?

Solution. The trivial group {1} and the whole group D6 are certainly normal.

Among the subgroups of order 2, only {1,x3} is normal: x(xiy)x−1 = xi+2y, so {1,xiy} is not
normal for any i.

The subgroup of order 3 is normal.

The subgroups of order 4 are not normal, by the calculation I just presented in the order 2 case.

The subgroups of order 6 are all normal, because they have index 2.

(c) What is the class equation for D6?

Solution.. The answer is 12 = 1+1+2+2+3+3.

In order to determine the size of the conjugacy class Ca of each element a, I’ll use the formula
|D6| = |Ca||Z(a)|, where Z(a) is the centralizer of a.

x commutes with all of the powers of x, and it doesn’t commute with y, so Z(x) is a proper subgroup
containing at least six elements. Since the order of Z(x) must divide 12, we conclude that it contains
exactly six elements; thus the conjugacy class of x contains two elements. One of those elements
is x; to find the other, we conjugate x by y: yxy−1 = yxy = x5y2 = x5. So Cx = {x,x5}. Similarly,
the conjugacy class of x2 is {x2,x4}. x3 works a bit differently, though: x3 does actually commute
with y, so Z(x3) is all of D6, so the conjugacy class of x3 is {x3}.

What is the stabilizer of y? xi is in Z(y) if and only if xiyx−i = y, and xiyx−i = xixiy = x2iy. This
equals y if and only if x2i = 1, which is true if and only if i = 0 or i = 3. So Z(y) contains 1 and
x3. Similarly, xiy commutes with y if and only if i = 0 or i = 3, so Z(y) = {1,x3,y,x3y}. Thus
there are three elements conjugate to y. You can find them by conjugating y by 1, by x, and by x2:
Cy = {y,x2y,x4y}. Similarly, the conjugacy class of xy is Cxy = {xy,x3y,x5y}. So the class equation
is

12 = 1+1+2+2+3+3.


