## Mathematics 412

Final preview
14 March 2003

As usual, clarity of exposition is as important as correctness of mathematics.

1. Two miscellaneous questions:
(a) A friend says, "I've proved that $3 x^{4}+7 x+25$ can't be factored as a product of lower degree polynomials with integer coefficients. I've been trying next to factor $3 x^{4}+7 x+25$ as a product of lower degree polynomials with rational coefficients. I haven't succeeded. Should I keep trying, or is there a reason why I can't do this?" How do you answer your friend?
(b) Another friend says, "I've been thinking about the ring $\mathbb{Q}[x] /\left(x^{5}-2\right)$. I know that I can write the elements of this ring in the form $a_{0}+a_{1} \gamma+a_{2} \gamma^{2}+a_{3} \gamma^{3}+a_{4} \gamma^{4}$, where each $a_{i}$ is in $\mathbb{Q}$ and where $\gamma$ satisfies the 're-write rule' $\gamma^{5}=2$. I also know that $x^{5}-2$ is irreducible in $\mathbb{Q}[x]$, and so $\mathbb{Q}[x] /\left(x^{5}-2\right)$ is actually a field: every nonzero element has a multiplicative inverse. So what is the multiplicative inverse of $\gamma$ ? What is the multiplicative inverse of $1+\gamma$ ?"
2. Consider the polynomial $x^{2}+3 x+1$. In each of the rings below, either explain why it is irreducible in that ring, or factor it as a product of irreducible polynomials.
(a) $\mathbb{Q}[x]$
(b) $\mathbb{R}[x]$
(c) $\mathbb{F}_{11}[x]$
3. Let $F$ be a field.
(a) Suppose that $m(x)$ and $u(x)$ are non-zero polynomials in $F[x]$ and you wish to divide $m(x)$ into $u(x)$. State what the Division Theorem tells you about this situation. You should make an explicit statement about the existence of certain polynomials.
(b) Suppose that $a(x)$ and $m(x)$ are relatively prime polynomials in $F[x]$. Bezout's Theorem guarantees the existence of polynomials $u(x)$ and $v(x)$ in $F[x]$ such that

$$
a(x) u(x)+m(x) v(x)=1 .
$$

Given this, prove that there exist polynomials $r(x)$ and $s(x)$ in $F[x]$, with $\operatorname{deg} r(x)<$ $\operatorname{deg} m(x)$, so that

$$
a(x) r(x)+m(x) s(x)=1 .
$$

4. In this problem, we will consider polynomials in $\mathbb{F}_{3}[x]$.
(a) Prove that the polynomial $x^{3}-x-1$ has no root in $\mathbb{F}_{3}[x]$. Using this, explain why $x^{3}-$ $x-1$ is irreducible in $\mathbb{F}_{3}[x]$.
(b) Construct a ring $K$ that contains $\mathbb{F}_{3}$, has an element $\gamma$ satisfying $\gamma^{3}=\gamma+1$, and has exactly 27 elements. Describe explicitly what the elements of $K$ are, describe what the product of any two elements of $K$ is, and explain why $K$ has 27 elements.
(c) Using the strengthened version of Bezout's theorem obtained in Problem 3(b), prove that $K$ is a field; that is, prove that each non-zero element of $K$ has a multiplicative inverse in $K$. Conclude that you have constructed a field larger than $\mathbb{F}_{3}$ in which $x^{3}-x-1$ has a root.
5. Suppose that $R$ is a ring with no zero-divisors. Recall that an element $a$ of $R$ is called irreducible if $a$ is not zero or a unit in $R$, and if, for any factorization of $a$ in $R$ as a product $r s$, either $r$ or $s$ is a unit.

Suppose that $R$ has a measure of size assigning to each element $r$ in $R$ a non-negative integer $N(r)$, and suppose that the measure of size satisfies the following properties.

- The zero element of $R$ has size 0 ; any non-zero element of $R$ has positive size.
- The smallest size any non-zero element of $R$ has is 3 , and the elements of $R$ of size 3 are precisely the units of $R$.
- The second smallest size any non-zero element of $R$ has is 5 , and each element of $R$ of size 5 is irreducible.
- For any two non-zero elements $r$ and $s$ of $R$, the inequality $N(r) \leq N(r s)$ holds. Moreover, if $s$ is not a unit, then $N(r)<N(r s)$.

Given this, prove that every element $a$ of $R$ that is not zero or a unit in $R$ is either irreducible or a product of irreducible elements of $R$.
6. Let $p$ be a prime number and suppose that $a$ and $b$ are integers such that $a^{2}+b^{2}=p$.
(a) Prove that the Gaussian integer $a+b i$ is irreducible in $\mathbb{Z}[i]$.
(b) Factor $p$ in $\mathbb{Z}[i]$ as a product of irreducible Gaussian integers, and explain why the factors in your factorization are irreducible.
(c) Let $p$ be the prime number 1021, which happens to satisfy the equation

$$
11^{2}+30^{2}=1021
$$

Describe 8 pairs of integers $(a, b)$ that satisfy

$$
a^{2}+b^{2}=1021
$$

(d) State what the unique factorization theorem for $\mathbb{Z}[i]$ says about the possible factorizations of 1021 in $\mathbb{Z}[i]$ as a product of irreducible Gaussian integers. Using this, explain why the eight pairs of integers $(a, b)$ that you found in (c) are the only pairs that satisfy $a^{2}+b^{2}=$ 1021.

