Name:
ID number:

Mathematics 307H Final

18 March 2003

Instructions: This is a closed book exam: no notes or calculators allowed. Please turn off all cell phones and pagers. When so indicated, put your answer in the box provided; otherwise, it's a good idea to put a box around each answer.

1. (15 points) Use Laplace transforms to solve this initial value problem:

$$
\begin{gathered}
y^{\prime \prime}+2 y^{\prime}+2 y=-\delta(t-4) \\
y(0)=0, y^{\prime}(0)=0 .
\end{gathered}
$$

2. Consider this initial value problem:

$$
y^{\prime \prime}+5 y^{\prime}+4 y=3, y(0)=0, y^{\prime}(0)=1
$$

(a) (15 points) Solve this using Laplace transforms.
(b) (15 points) Solve this using the characteristic equation and the method of undetermined coefficients.
3. (a) (10 points) Suppose $f(t)= \begin{cases}0 & \text { when } t<3 \\ t & \text { when } 3 \leq t<4 . \text { Compute } \mathcal{L}(f(t)) \text {. } \\ 0 & \text { when } t \geq 4\end{cases}$
(b) (10 points) Imagine that you are trying to solve a differential equation $y^{\prime \prime}+\cdots$ using Laplace transforms. As usual, let Y denote the Laplace transform of y. Suppose that you end up with

$$
Y=e^{-2 s} \frac{1}{s+3}+e^{-3 s} \frac{1}{s^{2}+4} .
$$

What is the solution y ?
4. (10 points) Use the definition of the Laplace transform to compute $\mathcal{L}\left(t e^{4 t}\right)$. You may assume that $s>4$.
5. (10 points) Consider this differential equation:

$$
y^{\prime}=y^{2}-9 .
$$

Which of the following pictures shows solution curves for this equation?
(a)

(b)

(e)

(d)

(f) none of the above
Your answer:
6. (5 points) State Euler's formula (the one about complex numbers).
7. (10 points) A tank is filled with 100 liters of salt water; at the start, the total amount of salt in the tank is 50 g (so the initial concentration is $1 / 2$ grams per liter). More salt water flows in to the tank, with concentration $2 \mathrm{~g} / \mathrm{l}$, at a rate of $3 \mathrm{l} / \mathrm{min}$. The well-combined mixture flows out of the tank at a rate of $3 \mathrm{l} / \mathrm{min}$. Find a formula for the amount of salt in the tank at time t.
(a) $51-e^{-3 t / 100}$
(b) $2+48 e^{-3 t / 100}$
(c) $200-150 e^{3 t / 100}$
(d) $50 e^{3 t / 100}$
(e) $2-\frac{3}{2} e^{-3 t / 100}$
(f) none of the above

Your answer:

