Homology and cohomology

April 22, 2002

Definition 0.1. A pair of CW complexes is a pair (X, A) of spaces with $A \subseteq X$.
Definition 0.2 (Eilenberg-Steenrod). A homology theory h assigns to each pair (X, A) a sequence of abelian groups $h_{n}(X, A), n \in \mathbf{Z}$, satisfying the following conditions:

- (Functoriality.) Each h_{n} is a functor. That is, given a map $f: X \rightarrow Y$ carrying the subspace A to B, there are induced homomorphisms $h_{n} f$: $h_{n}(X, A) \rightarrow h_{n}(Y, B)$, satisfying the appropriate conditions (composition, identity).
- (Homotopy axiom.) If $f \simeq g: X \rightarrow Y$, then $h_{n} f=h_{n} g$ for all n.
- (Exact sequences.) Write $h_{n} X$ for $h_{n}(X, \emptyset)$. For any pair (X, A), there are natural "boundary homomorphisms" $\partial: h_{n}(X, A) \rightarrow h_{n-1} A$ so that the sequence

$$
\cdots \rightarrow h_{n} A \xrightarrow{h_{n} i} h_{n} X \xrightarrow{h_{n} j} h_{n}(X, A) \xrightarrow{\partial} h_{n-1} A \rightarrow \cdots
$$

is exact. In this diagram, i is the inclusion map $i: A \hookrightarrow X$, and j is the map of pairs $(X, \emptyset) \rightarrow(X, A)$ induced by the identity map on X.

- (Excision.) For any CW pair $(X, A), h_{n}(X, A) \cong h_{n}(X / A, A / A)$.
- (Sums.) Given spaces X_{α} with subspaces $A_{\alpha} \subseteq X_{\alpha}$, let $X=\coprod X_{\alpha}$ and $A=\amalg A_{\alpha}$. Then the map

$$
\bigoplus h_{n} i_{\alpha}: \bigoplus h_{n}\left(X_{\alpha}, A_{\alpha}\right) \rightarrow h_{n}(X, A)
$$

is an isomorphism, where $i_{\alpha} X_{\alpha} \hookrightarrow X$ is the inclusion map.
For most of the cases we're going to be concerned with, h_{n} (point) will be nonzero only when $n=0$; in this case, the group h_{0} (point) $=G$ is called the coefficients of the homology theory. The resulting theory is called homology with coefficients in G, is written $H_{n}(X, A ; G)$, and is uniquely determined by the definition and G.

Definition 0.3. A cohomology theory is "dual" to this. It assigns to each pair (X, A) a sequence of abelian groups $h^{n}(X, A), n \in \mathbf{Z}$, satisfying the following conditions:

- (Functoriality.) Each h^{n} is a contravariant functor.
- (Homotopy axiom.) If $f \simeq g: X \rightarrow Y$, then $h^{n} f=h^{n} g$ for all n.
- (Exact sequences.) For any pair (X, A), there are natural "boundary homomorphisms" $\delta: h^{n} A \rightarrow h^{n+1}(X, A)$ so that the sequence

$$
\cdots \rightarrow h^{n}(X, A) \xrightarrow{h^{n} j} h^{n} X \xrightarrow{h^{n} i} h^{n} A \xrightarrow{\delta} h^{n+1}(X, A) \rightarrow \cdots
$$

is exact.

- (Excision.) For any CW pair $(X, A), h^{n}(X, A) \cong h^{n}(X / A, A / A)$.
- (Products.) Given spaces X_{α} with subspaces $A_{\alpha} \subseteq X_{\alpha}$, let $X=\amalg X_{\alpha}$ and $A=\amalg A_{\alpha}$. Then the map

$$
\prod h^{n} i_{\alpha}: h^{n}(X, A) \rightarrow \prod h^{n}\left(X_{\alpha}, A_{\alpha}\right)
$$

is an isomorphism.
Coefficients work the same way as for homology.
An important feature of cohomology: if R is a commutative ring, then cohomology with coefficients in $R, H^{*}(-; R)=\bigoplus H^{i}(-; R)$, has the structure of a graded commutative R-algebra. For any space X, there is a unique map $X \rightarrow$ (point); in cohomology, this induces $H^{*}($ point $R) \rightarrow H^{*}(X ; R)$, and the image of $1 \in R=H^{0}$ (point; R) is the unit element in $H^{*}(X ; R)$. One can show that if X is connected, then this map in cohomology is an isomorphism in $H^{0}(-; R)$ (and in fact in $H^{i}(-; R)$ for all $\left.i \leq 0\right)$.

By the way, the product is called the "cup product".
Example 0.4. Let R be a commutative ring.

- First, if X is the one point space, then $H^{i}(X ; R)$ is given by

$$
H^{i}(X ; R)= \begin{cases}R, & \text { if } i=0 \\ 0, & \text { otherwise }\end{cases}
$$

This is by definition of the cohomology theory $H^{*}(-; R)$.

- Next, the cohomology algebras of spheres. I claim that $H^{i}\left(S^{n} ; R\right)$ is nonzero only when $i=0$ and $i=n$: if $n=0$, then $H^{0}\left(S^{0} ; R\right)=R \oplus R$, and if $n>0$, then $H^{0}\left(S^{n} ; R\right)=H^{n}\left(S^{n} ; R\right)=R$. The proof is by induction on n, using excision and the long exact sequence (and the product axiom for the $n=0$ case).

The algebra structure is essentially determined by this. When $n>0$,

$$
H^{i}(X ; R)= \begin{cases}R & \text { if } i=0 \text { (unit element) } \\ R & \text { if } i=n \text { (spanned by some element } x) \\ 0 & \text { otherwise }\end{cases}
$$

Because of the grading, x^{2} is in $H^{2 n}\left(S^{n} ; R\right)=0$. Thus all products are zero here: as a graded algebra $H^{*}\left(S^{n} ; R\right)=R[x] /\left(x^{2}\right)$, with x in degree n.

I'll leave the ring structure when $n=0$ to the reader.

- Other examples: $H^{*}\left(\mathbf{C} P^{n} ; R\right)=R[x] /\left(x^{n+1}\right)$, where x is in degree 2. If $R=\mathbf{Z}$ or if R is a field, and if X and Y are spaces with, say, $H^{i}(X ; R)$ free for each i, then $H^{*}(X \times Y ; R) \cong H^{*}(X ; R) \otimes_{R} H^{*}(Y ; R)$. So for example, $H^{*}\left(S^{1} \times S^{1} ; \mathbf{Z}\right)=\Lambda(x, y)$, where x and y are in degree 1. Here, $\Lambda(x, y)=$ $\Lambda_{\mathbf{Z}}(x, y)$ denotes the exterior algebra on x and y : the free \mathbf{Z}-algebra on those generators, subject to the relations $a b=(-1)^{(\operatorname{deg} a)(\operatorname{deg} b)} b a$ for all a and b.
- If $R=\mathbf{F}_{2}$, then $H^{*}\left(\mathbf{R} P^{n} ; \mathbf{F}_{2}\right) \cong \mathbf{F}_{2}[x] /\left(x^{n+1}\right)$.

