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Definition 0.1. A pair of CW complexes is a pair (X,A) of spaces with A ⊆ X.

Definition 0.2 (Eilenberg-Steenrod). A homology theory h assigns to each
pair (X,A) a sequence of abelian groups hn(X,A), n ∈ Z, satisfying the follow-
ing conditions:

• (Functoriality.) Each hn is a functor. That is, given a map f : X → Y
carrying the subspace A to B, there are induced homomorphisms hnf :
hn(X,A)→ hn(Y,B), satisfying the appropriate conditions (composition,
identity).

• (Homotopy axiom.) If f ' g : X → Y , then hnf = hng for all n.

• (Exact sequences.) Write hnX for hn(X, ∅). For any pair (X,A), there
are natural “boundary homomorphisms” ∂ : hn(X,A) → hn−1A so that
the sequence

· · · → hnA
hni−−→ hnX

hnj−−→ hn(X,A) ∂−→ hn−1A→ · · ·

is exact. In this diagram, i is the inclusion map i : A ↪→ X, and j is the
map of pairs (X, ∅)→ (X,A) induced by the identity map on X.

• (Excision.) For any CW pair (X,A), hn(X,A) ∼= hn(X/A,A/A).

• (Sums.) Given spaces Xα with subspaces Aα ⊆ Xα, let X =
∐
Xα and

A =
∐
Aα. Then the map⊕

hniα :
⊕

hn(Xα, Aα)→ hn(X,A)

is an isomorphism, where iαXα ↪→ X is the inclusion map.

For most of the cases we’re going to be concerned with, hn(point) will be
nonzero only when n = 0; in this case, the group h0(point) = G is called the
coefficients of the homology theory. The resulting theory is called homology
with coefficients in G, is written Hn(X,A;G), and is uniquely determined by
the definition and G.
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Definition 0.3. A cohomology theory is “dual” to this. It assigns to each pair
(X,A) a sequence of abelian groups hn(X,A), n ∈ Z, satisfying the following
conditions:

• (Functoriality.) Each hn is a contravariant functor.

• (Homotopy axiom.) If f ' g : X → Y , then hnf = hng for all n.

• (Exact sequences.) For any pair (X,A), there are natural “boundary
homomorphisms” δ : hnA→ hn+1(X,A) so that the sequence

· · · → hn(X,A)
hnj−−→ hnX

hni−−→ hnA
δ−→ hn+1(X,A)→ · · ·

is exact.

• (Excision.) For any CW pair (X,A), hn(X,A) ∼= hn(X/A,A/A).

• (Products.) Given spaces Xα with subspaces Aα ⊆ Xα, let X =
∐
Xα

and A =
∐
Aα. Then the map∏

hniα : hn(X,A)→
∏

hn(Xα, Aα)

is an isomorphism.

Coefficients work the same way as for homology.
An important feature of cohomology: if R is a commutative ring, then co-

homology with coefficients in R, H∗(−;R) =
⊕
Hi(−;R), has the structure

of a graded commutative R-algebra. For any space X, there is a unique map
X → (point); in cohomology, this induces H∗(point;R) → H∗(X;R), and the
image of 1 ∈ R = H0(point;R) is the unit element in H∗(X;R). One can
show that if X is connected, then this map in cohomology is an isomorphism in
H0(−;R) (and in fact in Hi(−;R) for all i ≤ 0).

By the way, the product is called the “cup product”.

Example 0.4. Let R be a commutative ring.

• First, if X is the one point space, then Hi(X;R) is given by

Hi(X;R) =

{
R, if i = 0,
0, otherwise.

This is by definition of the cohomology theory H∗(−;R).

• Next, the cohomology algebras of spheres. I claim that Hi(Sn;R) is
nonzero only when i = 0 and i = n: if n = 0, then H0(S0;R) = R⊕R, and
if n > 0, then H0(Sn;R) = Hn(Sn;R) = R. The proof is by induction on
n, using excision and the long exact sequence (and the product axiom for
the n = 0 case).
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The algebra structure is essentially determined by this. When n > 0,

Hi(X;R) =


R if i = 0 (unit element),
R if i = n (spanned by some element x),
0 otherwise.

Because of the grading, x2 is in H2n(Sn;R) = 0. Thus all products are
zero here: as a graded algebra H∗(Sn;R) = R[x]/(x2), with x in degree
n.

I’ll leave the ring structure when n = 0 to the reader.

• Other examples: H∗(CPn;R) = R[x]/(xn+1), where x is in degree 2. If
R = Z or if R is a field, and if X and Y are spaces with, say, Hi(X;R) free
for each i, then H∗(X ×Y ;R) ∼= H∗(X;R)⊗RH∗(Y ;R). So for example,
H∗(S1 × S1; Z) = Λ(x, y), where x and y are in degree 1. Here, Λ(x, y) =
ΛZ(x, y) denotes the exterior algebra on x and y: the free Z-algebra on
those generators, subject to the relations ab = (−1)(deg a)(deg b)ba for all a
and b.

• If R = F2, then H∗(RPn; F2) ∼= F2[x]/(xn+1).
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