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The important thing about fibrations, as far as this course is concerned, is the examples.
I’ll give definitions and results, too.

Definition 0.1. A map p : E → B has the homotopy lifting property with respect to a space
Y if, given a map G : Y × I → B and a map g : Y → E so that p ◦ g is the restriction of G
to the 0-end of Y × I, then there is a map G̃ : Y × I → E lifting G:
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A (Hurewicz) fibration is a map p : E → B which has the homotopy lifting property with
respect to all spaces. A Serre fibration is a map which has the homotopy lifting property
(HLP) with respect the n-disk for all n ≥ 0. (Equivalently, a Serre fibration has the HLP
with respect to all finite CW complexes.)

For either kind of fibration, E is called the total space and B the base space.
Given a point b ∈ B, then Fb = p−1(b) is the fiber of p at b.

Proposition 0.2. Given a fibration p : E → B, if b0 and b1 are points in B which are
connected by a path, then Fb0 is homotopy equivalent to Fb1 .

(So any reasonable algebraic invariant gives the same answer for Fb0 and Fb1 .)
Because of this, we will often want to assume that the base space is path-connected. Also

because of this, we will often refer to “the fiber” of a fibration – this is not well-defined up
to homeomorphism, but it is up to homotopy equivalence.

Definition 0.3. Given any space B with basepoint b, let PB denote the space of paths in
B starting at b: PB = {γ : I → B | γ(0) = b}. Then PB can be given a reasonable topology
(the “compact-open” topology), and if B is path-connected, PB is contractible (homotopy
equivalent to a point). Let ΩB denote the (based) loop space of B: the subspace of PB
consisting of all paths starting and ending at b.
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(One can also define the spaces of unbased paths and loops, but I’m not going to discuss
those.)

Example 0.4. 1. Any fiber bundle E → B with B paracompact is a Hurewicz fibration.
Any fiber bundle is a Serre fibration. In this case, of course, the fibers over any two
points are homeomorphic (if B is connected).

2. The projection map F ×B → B is a fibration, called the “trivial fibration”. The fiber
over every point is homeomorphic to F .

3. Covering spaces are fibrations. The fiber over every point is discrete.

4. Given a space X with basepoint x0, the map PX → X defined by γ 7→ γ(1) is a
fibration. The fiber over x0 is ΩX; the fiber over any other point x1 is the space of paths
from x0 to x1, which is homotopy equivalent to ΩX as long as X is path-connected.
This is called the “path-loop fibration”.

5. If G is a Lie group and H ≤ G a closed subgroup, then G → G/H is a fibration with
fiber H.

6. The Hopf fibrations: for n = 1, 2, 4, 8, there are fibrations S2n−1 → Sn with fiber Sn−1.
When n = 1, for instance, this is a map from the unit sphere in R2 to one-dimensional
real projective space; when n = 2, it’s the analogous thing with the complex numbers,
etc.

One more topic: given a fibration E → B with fiber F , there is an action of π1(B) on the
homology and cohomology of F , and I want to define that.

ΩB is an “H-space”: that is, it’s a topological group up to homotopy. What I mean is this:
there is a product ΩB×ΩB → ΩB, defined by concatenating loops, which is associative and
commutative up to homotopy, and which has an identity element and inverses up to homotopy.
It’s a good idea to think of ΩB as being a topological group; indeed, it is homotopy equivalent
to one.

Fix a fibration p : E → B with fiber F = Fb. There is an action of ΩB on F = Fb; given
a point y ∈ F ⊆ E and a loop γ based at b, one can use the definition of fibration to lift γ to
a path γ̃ in E starting at y and ending at some point, say z ∈ E. Since γ̃ is a lift of γ, the
end point z must map to b, and hence is in the fiber Fb. So the action is

µ : ΩB × F −→ F,

(γ, y) 7−→ z.

For any γ ∈ ΩB, let hγ(w) = µ(γ−1, w). Then hγ is a map from F to itself.

Proposition 0.5. 1. If α ' β, then hα ' hβ.

2. If α is the constant loop at b, then hα = 1F .

3. If α ∗ β is the loop multiplication of α and β, then hα∗β = hα ◦ hβ.

Corollary 0.6. Let G be an abelian group and p : E → B a fibration. Assume that B is
path-connected and fix b ∈ B. Then h− induces an action of π1(B, b) on H∗(F ;G) and on
H∗(F ;G).
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