An approach to the Bockstein spectral sequence

Notation

Let C^{\bullet} be a chain complex of **Z**-modules, and for any abelian group G, let $C^{\bullet}(G) = C^{\bullet} \otimes G$. Write $H^*(G)$ for the homology of $C^{\bullet}(G)$.

Computing homology with coefficients in $Q/Z_{(p)}$

The sequence of inclusions

$$\mathbf{Z}/p \hookrightarrow \mathbf{Z}/p^2 \hookrightarrow \cdots \hookrightarrow \mathbf{Q}/\mathbf{Z}_{(p)}$$

induces a filtration

$$C^{\bullet}(\mathbf{Z}/p) \hookrightarrow C^{\bullet}(\mathbf{Z}/p^2) \hookrightarrow \cdots \hookrightarrow C^{\bullet}(\mathbf{Q}/\mathbf{Z}_{(p)})$$

so that $C^{\bullet}(\mathbf{Q}/\mathbf{Z}_{(p)}) = \varinjlim C^{\bullet}(\mathbf{Z}/p^n)$. Since homology commutes with direct limits, $H^*(\mathbf{Q}/\mathbf{Z}_{(p)}) = \varinjlim H^*(\mathbf{Z}/p^n)$.

More precisely, define a decreasing filtration F^* on $C^{\bullet}(\mathbf{Q}/\mathbf{Z}_{(p)})$ by $F^sC^{\bullet} = C^{\bullet}(\mathbf{Z}/p^{-s})$ when $s \leq 0$, and $F^sC^{\bullet} = 0$ when $s \geq 0$. Then for each s < 0, there is a short exact sequence

$$0 \to F^{s+1}C^{\bullet} \to F^sC^{\bullet} \to F^sC^{\bullet}/F^{s+1}C^{\bullet} \to 0,$$

and furthermore, $F^s C^{\bullet}/F^{s+1}C^{\bullet} \cong C^{\bullet}(\mathbf{Z}/p)$. Taking homology gives a spectral sequence with

$$E_1^{s,t} = H^{s+t}(F^s C^{\bullet}/F^{s+1}C^{\bullet}) \cong \begin{cases} H^{s+t}(\mathbf{Z}/p), & \text{when } s < 0, \\ 0 & \text{when } s \ge 0, \end{cases}$$

converging to $H^{s+t}(\mathbf{Q}/\mathbf{Z}_{(p)})$, with $d^r: E_r^{s,t} \to E_r^{s+r,t-r+1}$. d^r is the rth Bockstein operation.

Note that $E_1^{s,t} = 0$ unless s < 0 and (if C^{\bullet} is zero in negative dimensions) $s + t \ge 0$, so it's a "third octant" spectral sequence – it's a second quadrant spectral sequence, only nonzero above the line s + t = 0. The differentials are periodic, and are determined by their image in $E_r^{0,t}$. Also, the extension problems are solved: given an $x \in H^n(\mathbf{Z}/p)$, if x supports no differentials and is not in the image of any differential, then it produces a sequence of summands $\mathbf{Z}/p \subseteq E_{\infty}^{-1,n+1}, \mathbf{Z}/p \subseteq E_{\infty}^{-2,n+2}, \mathbf{Z}/p \subseteq E_{\infty}^{-3,n+3}, \ldots$, which fit together to form a copy of $\mathbf{Q}/\mathbf{Z}_{(p)}$. If x supports a d_r , then there is a corresponding \mathbf{Z}/p summand in $E_{\infty}^{-i,n+i}$ for $1 \le i \le r$, and these fit together to form a copy of \mathbf{Z}/p^r in the target.

Finally, by an application of the universal coefficient theorem, or by looking at the short exact sequences

$$0 \to \mathbf{Z} \to \mathbf{Z}_{(p)} \to \mathbf{Z}_{(p)} / \mathbf{Z} \to 0,$$

$$0 \to \mathbf{Z}_{(p)} \to \mathbf{Q} \to \mathbf{Q} / \mathbf{Z}_{(p)} \to 0,$$

one can relate $H^*(\mathbf{Q}/\mathbf{Z}_{(p)})$ to $H^*(\mathbf{Z})/(\text{torsion prime to } p)$: knowing either one lets you compute the other.

Computing homology with coefficients in \mathbf{Z}_p^\wedge

The sequence of surjections

$$\mathbf{Z}_p^{\wedge} \twoheadrightarrow \cdots \twoheadrightarrow \mathbf{Z}/p^3 \twoheadrightarrow \mathbf{Z}/p^2 \twoheadrightarrow \mathbf{Z}/p$$

induces a filtration

$$C^{\bullet}(\mathbf{Z}_p^{\wedge}) \to \cdots \to C^{\bullet}(\mathbf{Z}/p^3) \to C^{\bullet}(\mathbf{Z}/p^2) \to C^{\bullet}(\mathbf{Z}/p),$$

but $C^{\bullet}(\mathbf{Z}_p^{\wedge}) \neq \varprojlim C^{\bullet}(\mathbf{Z}/p^n)$ in general. These will be equal if, for example, C^{\bullet} is the cellular chain complex for a locally finite cell complex.

One can use this filtration, as above, to set up a spectral sequence with

$$E_1^{s,t} = H^{s+t}(\mathbf{Z}/p) \Rightarrow H^{s+t}(\mathbf{Z}_p^{\wedge}),$$
$$d_r : E_r^{s,t} \to E_r^{s+r,t-r+1}.$$

Note that $E_{s,t}^1 = 0$ unless $s \ge 0$ and (if $C^{\bullet} = 0$ in negative dimensions) $s + t \ge 0$ – it's a right half-plane spectral sequence, concentrated above the line s + t = 0.

Convergence is an issue, but should be okay if $H^*(\mathbf{Z})$ if finitely generated in each dimension. (Maybe you just need bounded p^r -torsion in each dimension, which is a weaker condition.) Recovering information about $H^*(\mathbf{Z})$ from $H^*(\mathbf{Z}_p^{\wedge})$ may also be an issue, but shouldn't be if all the groups involved are finitely generated.