An approach to the Bockstein spectral sequence

Notation

Let C^{\bullet} be a chain complex of \mathbf{Z}-modules, and for any abelian group G, let $C^{\bullet}(G)=C^{\bullet} \otimes G$. Write $H^{*}(G)$ for the homology of $C^{\bullet}(G)$.

Computing homology with coefficients in $\mathrm{Q} / \mathrm{Z}_{(p)}$

The sequence of inclusions

$$
\mathbf{Z} / p \hookrightarrow \mathbf{Z} / p^{2} \hookrightarrow \cdots \hookrightarrow \mathbf{Q} / \mathbf{Z}_{(p)}
$$

induces a filtration

$$
C^{\bullet}(\mathbf{Z} / p) \hookrightarrow C^{\bullet}\left(\mathbf{Z} / p^{2}\right) \hookrightarrow \cdots \hookrightarrow C^{\bullet}\left(\mathbf{Q} / \mathbf{Z}_{(p)}\right)
$$

so that $C^{\bullet}\left(\mathbf{Q} / \mathbf{Z}_{(p)}\right)=\underline{\lim } C^{\bullet}\left(\mathbf{Z} / p^{n}\right)$. Since homology commutes with direct limits, $H^{*}\left(\mathbf{Q} / \mathbf{Z}_{(p)}\right)=\lim \vec{H}^{*}\left(\mathbf{Z} / p^{n}\right)$.

More precisely, define a decreasing filtration F^{*} on $C^{\bullet}\left(\mathbf{Q} / \mathbf{Z}_{(p)}\right)$ by $F^{s} C^{\bullet}=$ $C^{\bullet}\left(\mathbf{Z} / p^{-s}\right)$ when $s \leq 0$, and $F^{s} C^{\bullet}=0$ when $s \geq 0$. Then for each $s<0$, there is a short exact sequence

$$
0 \rightarrow F^{s+1} C^{\bullet} \rightarrow F^{s} C^{\bullet} \rightarrow F^{s} C^{\bullet} / F^{s+1} C^{\bullet} \rightarrow 0
$$

and furthermore, $F^{s} C^{\bullet} / F^{s+1} C^{\bullet} \cong C^{\bullet}(\mathbf{Z} / p)$. Taking homology gives a spectral sequence with

$$
E_{1}^{s, t}=H^{s+t}\left(F^{s} C^{\bullet} / F^{s+1} C^{\bullet}\right) \cong \begin{cases}H^{s+t}(\mathbf{Z} / p), & \text { when } s<0 \\ 0 & \text { when } s \geq 0\end{cases}
$$

converging to $H^{s+t}\left(\mathbf{Q} / \mathbf{Z}_{(p)}\right)$, with $d^{r}: E_{r}^{s, t} \rightarrow E_{r}^{s+r, t-r+1} . d^{r}$ is the r th Bockstein operation.

Note that $E_{1}^{s, t}=0$ unless $s<0$ and (if C^{\bullet} is zero in negative dimensions) $s+t \geq 0$, so it's a "third octant" spectral sequence - it's a second quadrant spectral sequence, only nonzero above the line $s+t=0$. The differentials are periodic, and are determined by their image in $E_{r}^{0, t}$. Also, the extension problems are solved: given an $x \in H^{n}(\mathbf{Z} / p)$, if x supports no differentials and is not in the image of any differential, then it produces a sequence of summands $\mathbf{Z} / p \subseteq E_{\infty}^{-1, n+1}, \mathbf{Z} / p \subseteq E_{\infty}^{-2, n+2}, \mathbf{Z} / p \subseteq E_{\infty}^{-3, n+3}, \ldots$, which fit together to form a copy of $\mathbf{Q} / \mathbf{Z}_{(p)}$. If x supports a d_{r}, then there is a corresponding \mathbf{Z} / p summand in $E_{\infty}^{-i, n+i}$ for $1 \leq i \leq r$, and these fit together to form a copy of \mathbf{Z} / p^{r} in the target.

Finally, by an application of the universal coefficient theorem, or by looking at the short exact sequences

$$
\begin{aligned}
& 0 \rightarrow \mathbf{Z} \rightarrow \mathbf{Z}_{(p)} \\
& \rightarrow \mathbf{Z}_{(p)} / \mathbf{Z} \rightarrow 0 \\
& 0 \rightarrow \mathbf{Z}_{(p)} \rightarrow \mathbf{Q}
\end{aligned} \mathbf{Q}^{\left(\mathbf{Z}_{(p)}\right.} \rightarrow 0
$$

one can relate $H^{*}\left(\mathbf{Q} / \mathbf{Z}_{(p)}\right)$ to $H^{*}(\mathbf{Z}) /($ torsion prime to $p)$: knowing either one lets you compute the other.

Computing homology with coefficients in \mathbf{Z}_{p}^{\wedge}

The sequence of surjections

$$
\mathbf{Z}_{p}^{\wedge} \rightarrow \cdots \rightarrow \mathbf{Z} / p^{3} \rightarrow \mathbf{Z} / p^{2} \rightarrow \mathbf{Z} / p
$$

induces a filtration

$$
C^{\bullet}\left(\mathbf{Z}_{p}^{\wedge}\right) \rightarrow \cdots \rightarrow C^{\bullet}\left(\mathbf{Z} / p^{3}\right) \rightarrow C^{\bullet}\left(\mathbf{Z} / p^{2}\right) \rightarrow C^{\bullet}(\mathbf{Z} / p),
$$

but $C^{\bullet}\left(\mathbf{Z}_{p}^{\wedge}\right) \neq \lim C^{\bullet}\left(\mathbf{Z} / p^{n}\right)$ in general. These will be equal if, for example, C^{\bullet} is the cellular chain complex for a locally finite cell complex.

One can use this filtration, as above, to set up a spectral sequence with

$$
\begin{gathered}
E_{1}^{s, t}=H^{s+t}(\mathbf{Z} / p) \Rightarrow H^{s+t}\left(\mathbf{Z}_{p}^{\wedge}\right), \\
d_{r}: E_{r}^{s, t} \rightarrow E_{r}^{s+r, t-r+1}
\end{gathered}
$$

Note that $E_{s, t}^{1}=0$ unless $s \geq 0$ and (if $C^{\bullet}=0$ in negative dimensions) $s+t \geq 0$ - it's a right half-plane spectral sequence, concentrated above the line $s+t=0$.

Convergence is an issue, but should be okay if $H^{*}(\mathbf{Z})$ if finitely generated in each dimension. (Maybe you just need bounded p^{r}-torsion in each dimension, which is a weaker condition.) Recovering information about $H^{*}(\mathbf{Z})$ from $H^{*}\left(\mathbf{Z}_{p}^{\wedge}\right)$ may also be an issue, but shouldn't be if all the groups involved are finitely generated.

