Hint for Section 3.6, \# 28.
My hint is to follow the hint given in the book.
In a bit more detail: you need to solve two different problems; first, you should solve

$$
y^{\prime \prime}+y=t
$$

This is easy, and you'll end up with a formula like

$$
y=c_{1}(\mathrm{blah})+c_{2}(\mathrm{blah})+(\mathrm{blah})
$$

This is part of the answer to the problem, the part valid when $t \leq \pi$, because that's where the right side of the equation came from: the non-homogeneous term is t when $t \leq \pi$. Since $0<\pi$, the initial conditions $(y(0)=0$ and $y^{\prime}(0)=1$) are relevant to this part of the solution, so apply them to find c_{1} and c_{2}. At this point, you should have a precise equation (no unknown constants or anything) for the solution $y(t)$ that is valid when $t \leq \pi$.

Next, you want to solve this:

$$
y^{\prime \prime}+y=\pi e^{\pi-t}
$$

This will give you another formula, like

$$
y=d_{1}(\text { blah })+d_{2}(\text { blah })+(\text { blah })
$$

This part of the solution is supposed to be valid when $t>\pi$, so it should pick up at $y=\pi$ where the first solution leaves off. If you think about the previous sentence (and a similar sentence in the problem in the book), you will be able to find some initial conditions to apply so that you can pin down d_{1} and d_{2}.

