
Mathematics 307 Final Exam
solutions

Warning: I have not proofread these carefully. There may be typos and algebra mis-
takes.

1. For full credit for this question, express your answers in sigma (Σ) notation.

(a) Fact:
∫
e−x

2
dx cannot be expressed in terms of familiar functions. It has a Maclau-

rin series, though; find it. (First find the Maclaurin series for e−x
2
, then integrate.)

Since ex =
∞∑
n=0

xn

n!
, then by substituting −x2 for x, I get

e−x
2

=
∞∑
n=0

(−x2)n

n!
=
∞∑
n=0

(−1)nx2n

n!
.

Now integrate: ∫
e−x

2

dx =
∞∑
n=0

(−1)nx2n+1

n!(2n+ 1)
+ c .

(b) Use the definition of the Taylor series to find the Taylor series for sin x at x0 = π/2.

The function in question is f(x) = sinx, and I know its derivatives: f ′(x) = cosx,
f ′′(x) = − sin x, f ′′′(x) = − cosx, and after that they repeat. Plug x0 = π/2 into
each of these: f(x0) = 1, f ′(x0) = 0, f ′′(x0) = −1, f ′′′(x0) = 0, and after that they
repeat. So the pattern is: the even ones are zero, and the odd ones alternate 1, −1,
1, −1, etc. So the Taylor series is

∞∑
n=0

f (n)(x0)

n!
(x− x0)n = 1 +

0

1!
(x− π/2) +

−1

2!
(x− π/2)2 +

0

3!
(x− π/2)3 + · · · .

After removing all of the terms that are zero (which are the odd powers of x−π/2),
I get

1− 1

2!
(x− π/2)2 +

1

4!
(x− π/2)4 − 1

6!
(x− π/2)6 + · · · .

This is equal to
∞∑
n=0

(−1)n

(2n)!
(x− π/2)2n .

2. Solve the following equation using a power series about x0 = 0. Find the recurrence rela-
tion; also find the first four nonzero terms in each of two linearly independent solutions.
If possible, find the general term in those solutions.

(1− x)y′′ − y = 0.



Let y =
∑∞

n=0 anx
n. Then y′′ =

∑∞
n=0 n(n−1)anx

n−2. Next I plug these in: the equation
becomes

(1− x)
∞∑
n=0

n(n− 1)anx
n−2 −

∞∑
n=0

anx
n = 0,

or (multiplying out the 1− x part)

∞∑
n=0

n(n− 1)anx
n−2 −

∞∑
n=0

n(n− 1)anx
n−1 −

∞∑
n=0

anx
n = 0.

Now I reindex the first two sums so that the generic term involves xn, and the result is

∞∑
n=−2

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=−1

(n+ 1)nan+1x
n −

∞∑
n=0

anx
n = 0.

The n = −2 and n = −1 terms of the first sum are zero, as is the n = −1 term of the
second sum, so I can change all of these to be sums starting at n = 0. So I get

∞∑
n=0

[(n+ 2)(n+ 1)an+2 − (n+ 1)nan+1 − an]xn = 0.

So for every n ≥ 0,

(n+ 2)(n+ 1)an+2 − (n+ 1)nan+1 − an = 0,

and this gives the recursion relation

an+2 =
(n+ 1)nan+1

(n+ 2)(n+ 1)
+

an
(n+ 2)(n+ 1)

,

or (slightly simplified)

an+2 =
nan+1

n+ 2
+

an
(n+ 2)(n+ 1)

.

Now I start plugging in values of n. When n = 0, this tells me

a2 =
0a1

2
+

a0

2 · 1
=
a0

2
.

When n = 1, I get

a3 =
a2

3
+
a1

6
=
a0

6
+
a1

6
.

The next few coefficients are

a4 =
2a3

4
+
a2

12
=
a0

12
+
a1

12
+
a0

24
=
a0

8
+
a1

12
,

a5 =
3a4

5
+
a3

20
=

3a0

40
+
a1

20
+

a0

120
+

a1

120
=
a0

12
+

7a1

120
.
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So the general solution is

y = a0 + a1x+
a0

2
x2 + (

a0

6
+
a1

6
)x3 + (

a0

8
+
a1

12
)x4 + (

a0

12
+

7a1

120
)x5 + · · · .

I can break this up into terms involving a0 and terms involving a1:

y = a0

(
1 +

1

2
x2 +

1

6
x3 +

1

8
x4 +

1

12
x5 + · · ·

)
+ a1

(
x+

1

6
x3 +

1

12
x4 +

7

120
x5 + · · ·

)
.

So here are two linearly independent solutions:

y1 = 1 +
1

2
x2 +

1

6
x3 +

1

8
x4 +

1

12
x5 + · · · ,

y2 = x+
1

6
x3 +

1

12
x4 +

7

120
x5 + · · · .

I don’t see a pattern, so I don’t know the general term in either of these.

3. Consider this initial value problem:

y′′ + xy′ + (cosx)y = 0, y(0) = 1, y′(0) = 0.

(a) Find y′′(0), y′′′(0), and y(4)(0).

To find y′′(0), just plug x = 0 into the equation:

y′′(0) + 0 · y′(0) + (cos 0)y(0) = 0,

so y′′(0) + 1 = 0, so y′′(0) = −1 . To find y′′′(0), differentiate the original equation

and then plug in x = 0:

y′′′ + xy′′ + y′ + (cosx)y′ + (− sin x)y = 0,

so y′′′(0) = 0 . Repeat for y(4)(0):

y(4) + xy′′′ + 2y′′ + (cosx)y′′ − 2(sinx)y′ − (cosx)y = 0.

So (skipping the zero terms):

y(4)(0) + 2y′′(0) + (cos 0)y′′(0)− (cos 0)y(0) = 0,

which is the same as y(4)(0)− 2− 1− 1 = 0, so y(4)(0) = 4 .

(b) What do you expect the radius of convergence for the solution y to be?

The coefficient of y′′ is already 1, so I don’t have to divide by anything. Both x
and cosx have Taylor series (with x0 = 0) with infinite radius of convergence, so I
expect the same of y: the radius of convergence is ∞ .
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4. Find the radius of convergence for each of the following series.

(a)
∞∑
n=0

(−1)nn

2n
x2n.

Use the ratio test:

lim
n→∞

∣∣∣∣(n+ 1)st term

nth term

∣∣∣∣ = lim
n→∞

∣∣∣∣(−1)n+1(n+ 1)x2(n+1)/2n+1

(−1)nnx2n/2n

∣∣∣∣ = lim
n→∞

∣∣∣∣(−1)(n+ 1)x2

2n

∣∣∣∣
=
|x2|
2

lim
n→∞

∣∣∣∣n+ 1

n

∣∣∣∣ .
The last limit is 1. We want the whole thing to be less than 1, so x2/2 < 1, so

x2 < 2, so |x| <
√

2. So the radius of convergence is
√

2 .

(b)
∞∑
n=1

xn

n!n
.

Use the ratio test:

lim
n→∞

∣∣∣∣xn+1/(n+ 1)!(n+ 1)

xn/n!n

∣∣∣∣ = lim
n→∞

∣∣∣∣ xn

(n+ 1)(n+ 1)

∣∣∣∣ = |x| lim
n→∞

∣∣∣∣ n

(n+ 1)(n+ 1)

∣∣∣∣ .
This last limit is 0, so the whole thing is less than 1 no matter what x is. So the
radius of convergence is ∞ .

5. Solve this initial value problem:

ty
dy

dt
= 1, y(1) = 2.

This is a first order separable equation, so separate the variables:

y dy =
dt

t
.

Now integrate both sides: y2/2 = ln t+ c. Solve for y:

y = ±
√

2 ln t+ c.

(Strictly speaking, that should be “2c,” but I’ve renamed my constant, as usual.) Now
apply the initial condition: when t = 1, y = 2: 2 = ±

√
2 ln 1 + c = ±

√
c. So c should

be 4, and I want the plus sign, not the minus sign:

y =
√

2 ln t+ 4 .

6. Do not solve the problems in parts (a)–(d). Instead, identify the type of problem
(“separable,” “second order linear homogeneous with constant coefficients,” things like
that), and tell me what method (or methods) to use to solve it (“integrating factor,”
“power series solution,” etc.).
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(a) t2y′′ − t(t+ 2)y′ + (t+ 2)y = 0, y1(t) = t.

This is a second order linear homogeneous equation (non-constant coefficients).
Since we are told one solution, y1, use reduction of order to find a second one.

(b)
dy

dt
= y(y − 1)(y − 2).

This is a first order separable equation, and in particular it is an autonomous
equation. If you could do the integrals, you could solve it by separating the variables
and integrating. For this particular equation, it is probably better to do quantitative
analysis, of the sort we did with the population growth problems in Chapter 2.

(c) y′′ + 4y = 2 tan 2t.

This is second order linear nonhomogeneous with constant coefficients. Use the char-
acteristic equation to find yh, the solution to the associated homogeneous equation,
and use variation of parameters to find yp. (You can’t use undetermined coefficients
because the nonhomogeneous part isn’t one of the right forms.)

(d)
dy

dt
+

2

t
y = e2t.

This is a first order linear equation. Solve it using an integrating factor (µ(t) =
e
∫

2/t dt, etc.).

7. Find the general solution to this differential equation:

y′′ − 4y′ − 5y = −10 sin t+ 2 cos t.

This is a second order linear nonhomogeneous equation with constant coefficients. Use
the characteristic equation to find yh: the characteristic equation is r2− 4r− 5 = 0, and
this has roots 5 and −1. So yh = c1e

5t + c2e
−t.

Use undetermined coefficients to find yp: try yp = A sin t+B cos t. I’m too lazy to type
in the resulting algebra, but I think you should end up with A = 1 and B = −1. So the
answer is

y = c1e
5t + c2e

−t + sin t− cos t .

8. (Bonus) An iron ball is hanging on a spring; there is friction present. If subject to no
external forces, the position y(t) of the ball at time t would satisfy this equation:

y′′ + 2y′ + 2y = 0.

At time 0, the ball is at its equilibrium position and has downward velocity 1. At time
t = π, I turn on an electromagnet that exerts a constant downward force of magnitude 1
on the ball; at time t = 2π, I turn off the magnet. Write down the initial value problem
described by this situation, and solve it.

I can’t tell you how to do every problem, can I?
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